使用1 * 1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3 * 3,64channels的卷积核前面添加一个1 * 1,28channels的卷积核,就变成了3 * 3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。因为1 * 1卷积核,可以在保持feature m...
比如若是输入为56×56×3的输入,那么这里的卷积核大小就为1×1×3,对于这样一个卷积,如下图所示...
(2)加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力; (3)跨通道信息交互(channal 的变换) 例子:使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核后面添加一个1*1,28channels的...
1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。 备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuron。 ③跨通道...
上面是一个 1x1 卷积核的输出示意图, 如果是 K 个1x1 卷积核,那么 结果就是 将通道数由 D 变为 K 降维或升维 特征通道数变化: 256 —> 64 —> 256 http://cs231n.github.io/convolutional-networks/#convert 这里先来看看全链接层和卷积层联系。 全链接层和卷积层的区别在于卷积层中的神经元只和前一...
如:使用1x1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3x3x64channels的卷积核前面添加一个1x1x28channels的卷积核,就变成了3x3x28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。
图1 1*1 卷积结构示意图 1×11\times{1}1×1卷积的作用 实现信息的跨通道交互与整合。考虑到卷积运算的输入输出都是3个维度(宽、高、多通道),所以1×11\times{1}1×1卷积实际上就是对每个像素点,在不同的通道上进行线性组合,从而整合不同通道的信息。 对卷积核通道数进行降维和升维,减少参数量。经过1...
那么1×1卷积核有什么作用呢,如果当前层和下一层都只有一个通道那么1×1卷积核确实没什么作用,但是如果它们分别为m层和n层的话,1×1卷积核可以起到一个跨通道聚合的作用,所以进一步可以起到降维(或者升维)的作用,起到减少参数的目的。 比如当前层为x×x×mx×x×m即图像大小为x×xx×x,特征层数为mm,然后...
多通道图片上使用1*1卷积核.png 输入是6*6*32的图片,经过1*1*32的卷积核进行卷积运算后,得到的输出图片是6*6*卷积过程中使用的卷积核个数。这样就将输入图片的通道数32改变了,相当于给输入图片进行降维或升维操作。注:输出图片的尺寸,还是根据最开始的公式计算,即Q值的大小。
28x28x192的数据,被32个1x1x192的卷积核作用后,就变为28x28x32的数据。这也就是所谓信道压缩,信道降维。当然如果你愿意,也可以增加信道维度。这在Inception网络中很有用 所以1 X 1 的卷积核有什么作用: 1)跨通道的特征整合 2)特征通道的升维和降维 ...