=(x+1)[(x+1)+1][2(x+1)+1]/6 也满足公式 4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证. 证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1): (n+1)^3-n^3=3n^2+3n+1, n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 . 3^3-2^3=3*...
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(...
解析 如果使用算术方法可以推导出来:我们知道 (k + 1)^3 - k^3 = 3k^2 + 3k + 1 (1 + 1)^3 - 1^2 = 3*1^2 + 3*1 + 1 (2 + 1)^3 - 2^3 = 3*2^2 + 3*2 + 1 (3 + 1)^3 - 3^3 = 3*3^2 + 3*3 + 1 .(n + 1)^3 - n^3 = 3*n^2 + ......
答案:数列1的平方、2的平方加到n的平方的和,其求和公式为:n**/6。该公式为高斯公式的一种应用情况。接下来,我会详细解释这一结果是如何得出的。解释:当我们尝试计算从1加到n的平方的总和时,这实际上是一个涉及到数学中著名的平方和公式的问题。历史上,许多数学家都对这一问题进行过深入的...
第一行1个圈,圈内的数字为1 第二行2个圈,圈内的数字都为2, 以此类推 第n行n个圈,圈内的数字都为n, 我们要求的平方和,就转化为了求这个三角形所有圈内数字的和.设这个数为r 下面将这个三角形顺时针旋转60度,得到第二个三角形 再将第二个三角形顺时针旋转60度,得到第三个三角形 然后,将这三个三角...
n(n+1)(2n+1)/6
n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)n^3-1=3*(1^2+2^...
(n+1)^3=(n+1)^3=n^3+3*n^2+3n+1 去掉中间步,将右边第一项移到左边得: 2^3 - 1^3=3*1^2+3*1+1 3^3 - 2^3=3*2^2+3*2+1 4^3 - 3^3=3*3^2+3*3+1 . . . . . . (n+1)^3-n^3=+3*n^2+3n+1 两边分别相加 (n+1)^3-1^3=3(1^2+2^2+3^2+4^2+. ...
数列求和问题涉及从1的平方到n的平方之和,方法多样,本文介绍一种直观有趣的方法。想象一个由圆圈构成的正三角形,每行圆圈数目依次增加。第一行有一个圆圈,数字为1;第二行有2个圆圈,数字都为2,以此类推,第n行有n个圆圈,圆圈内的数字均为n。我们要求解的是这些圆圈内数字的平方和。将这个...
n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)n^3-1=3*(1^2+2^...