1.降维或升维,减少参数量 通过1*1卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量! 图示: g...
1*1的卷积作用 1*1的卷积作用 实现跨通道的交互和信息整合,实现卷积核通道数的降维和升维,可以实现多个feature map的线性组合,而且可实现与全连接层的等价效果。 Bottleneck 怎样才能减少卷积层参数量? 如果仅仅引入多个尺寸的卷积核,会带来大量的额外的参数,受到Network In Network中1×1卷积核的启发,为了解决这个...
1*1卷积核的作用 进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数...
1×1卷积核的作用 1×1卷积核主要功能是改变通道数目,致使减少计算量。在使用1×1卷积核的过程中,不改变原始图片的宽度和高度,它只是改变了通道数。它同时对原始图片的所有信道进行卷积,融合成一个值,如下图所示: 上图是一个图片的三个通道,通过 1×1卷积核,形成了与原始图片相同高与宽图片,只是通道变...
1 x 1卷积核的作用 在incenption,resnet中使用到了大量的1x1卷积核,这些1x1的卷积核到底有哪些作用呢? 1、降维/升维。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1x1的卷积,那么结果的大小为50050020; 2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励...
一、来源:[1312.4400] Network In Network(如果1×1卷积核接在普通的卷积层后面,配合激活函数,即可实现network in network的结构) 二、应用:GoogleNet中的Inception、ResNet中的残差模块 三、作用: 1、降维(减少参数) 例子1 : GoogleNet中的3a模块 输入的feature map是28×28×192 ...
1x1的卷积核由于大小只有1x1,所以并不需要考虑像素跟周边像素的关系,它主要用于调节通道数,对不同的通道上的像素点进行线性组合,然后进行非线性化操作,可以完成升维和降维的功能,如下图所示,选择2个1x1大小的卷积核,那么特征图的深度将会从3变成2,如果使用4个1x1的卷积核,特征图的深度将会由3变成4。
1.通过改变通道数实现降维或者升维
1、1*1的卷积核有什么作用?我们该怎么去理解它的原理呢? (1)当1*1卷积出现时,在大多数情况下它作用是升/降特征的维度,这里的维度指的是通道数(厚度),而不改变图片的宽和高。 使用1*1卷积是想加深加宽网络结构。 举个例子:比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H...