1*1卷积的作用 卷积层参数量、计算量的计算方法 2 方法 2.1 1*1卷积的作用 (1)1*1卷积核可以通过控制卷积核数量实现降维或升维。从卷积层流程可以了解到卷积后的特征图通道数与卷积核的个数是相同的,所以当1x1卷积核的个数小于输入通道数量时,会...
1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。 备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature...
1×1卷积通过减少参数数量,不仅降低了存储需求,也提升了运算速度。例如,在ResNet架构中,1×1卷积被用于残差学习模块,以减少输入和输出维度,从而有效减轻网络负担。 1×1卷积虽小,却在CNN的设计和优化中起到了举足轻重的作用。通过特征融合、维度调整和网络瘦身,1×1卷积不仅提升了网络的性能,也大大增强了其实用性...
增加网络非线性拟合能力:1*1卷积后通常会接激活函数,通过增加多个1*1卷积层,可以接入多个激活函数,增强网络的非线性拟合能力。 跨通道信息交融:1*1卷积允许在不同通道之间进行信息的线性组合和变换,实现跨通道的信息交互,这有助于模型更好地理解和利用多通道输入数据中的信息。
此外,特别简单地,使用1*1的卷积核的另一个特点在于它不会改变尺寸大小,但可以很方便地实现通道数的变化,控制卷积核的个数就可以达到这一目的。 NiN(Network in Network)网络中的1*1卷积 之前提到过AlexNet,VGG等网络,都是在经过一些列卷积池化操作过后将结果打平(flatten),送入全连接层,最终将结果映射到结果数...
2.1卷积:单通道形式 在深度学习中,卷积本质上是对信号按元素相乘累加得到卷积值。对于具有1个通道的...
1×1卷积的主要作用包括以下几点:降维和升维:1×1卷积核可以通过控制卷积核的数量来有效地进行特征图的降维或升维操作。在不改变特征图空间尺寸的前提下,调整通道数,从而优化计算量和参数量。减少计算量和参数量:相比于大尺寸的卷积核,1×1卷积核的计算量和参数量都大大减少。这在深层神经网络中...
1*1卷积的作用 我最开始接触到 卷积应该是在阅读经典论文GoogleNet的时候,当然我说的是我第一次接触,并不代表GoogleNet(包含了InceptionV1-V4)是第一个使用 卷积的。在InceptionV1网络中,Inception模块长下面这样: 可以看到这个Inception模块中,由于每一层网络采用了更多的卷积核,大大增加了模型的参数量。这时候为了...
1*1卷积核作用 1.降维或升维,减少参数量 通过1*1卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积...