1.降维或升维,减少参数量 通过1*1卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量! 图示: g...
1*1的卷积作用 1*1的卷积作用 实现跨通道的交互和信息整合,实现卷积核通道数的降维和升维,可以实现多个feature map的线性组合,而且可实现与全连接层的等价效果。 Bottleneck 怎样才能减少卷积层参数量? 如果仅仅引入多个尺寸的卷积核,会带来大量的额外的参数,受到Network In Network中1×1卷积核的启发,为了解决这个...
1*1卷积核的作用 进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数...
1 x 1卷积核的作用 在incenption,resnet中使用到了大量的1x1卷积核,这些1x1的卷积核到底有哪些作用呢? 1、降维/升维。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1x1的卷积,那么结果的大小为50050020; 2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励(...
文章目录 前言 一、1×1的操作过程 二、压缩通道 前言 在卷积神经网络中,卷积操作是至关重要的缓解,可以根据问题调整卷积核的大小,那么1*1的卷积核有没有它是实际作用呢? 答案:答案显而易见,而且1×1的卷积核在一些网络模型中起着至关重要的作用,例如inception网络模型。 一、1×1的操作过程 如图所示,输入...
因为1 * 1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep,增加非线性特性。 参考文献 https://blog.csdn.net/a1154761720/article/details/53411365/ https://www.zhihu.com/question/56024942/answer/369745892...
2,有升维或降维的作用 卷积核的个数就对应输出的通道数(channels),卷积后的的 featuremap 通道数是...
1维卷积核在网络中经常用到,我总结一下它的用途就是 不改变特征图尺寸的前提下去改变通道数(升维降维...
因此, 1 × 1 1\times 1 1×1卷积的作用可以总结为可以实现信息的通道整合和交互,以及具有升维/降维的能力。 卷积核是否越大越好? 这是本文的最后一个问题,显然这个问题我们肯定会回答否。但你是否真的认真思考过其中的原因? 在早期的一些经典网络中如Lenet-5和AlexNet,用到了一些大的卷积核例如 11 × 11...