技术标签:PTA黑洞数Kaprekar问题数字黑洞陷阱数 最近当C程助教,把学生要做的题先刷了一遍,大部分题没有难度,但有几道还是挺有意思的。比如下边这道: 黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。 任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得...
[刷题] PTA 7-44 黑洞数 我的程序,一个用例通不过 1#include<stdio.h>2voidsort(int*a,intn);34intmain() {5intnum,a,b,c,count=1;6scanf("%d",&num);7while(num!=495&&num!=0) {8a = num/100;9b = num%100/10;10c = num%100%10;11intp[] ={a,b,c};12sort(p,3);13intg1,...
PTA刷题笔记(C语言) | 7-44 黑洞数 (20分) 开始刷题,感觉代码量和基础太渣了,导致数据结构不会,重头慢慢刷吧~ 1、题目 输入样例: 123 输出样例: 1: 321 - 123 = 198 2: 981 - 189 = 792 3: 972 - 279 = 693 4: 963 - 369 = 594 5: 954 - 459 = 495 2、代码 #include<stdio.h> ...
PTA黑洞数(C语言版)评分: 7-1 黑洞数 (20分) 黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。 任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。
【PTA】黑洞数 7-44 黑洞数(20 分) 黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。 任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四...
[刷题] PTA 7-44 黑洞数,我的程序,一个用例通不过1#include<stdio.h>2voidsort(int*a,intn);34intmain(){5intnum,a,b,c,count=1;6scanf("%d",&num);7while(num!=495&&num!=0){