算法 ACH 可以看作是一类基于神经网络的 Weighted CFR 算法的一个高效实现。我们证明了 Weighted CFR 的算法收敛性,进而近似证明了 ACH 的算法收敛性:另外,针对 1v1 麻将的具体神经网络设计如下 实验结果 在对比主流方法的基础上,该算法的优越性在 1v1 麻将(战胜职业冠军)和 1v1 德州扑克上均得到了验证。二人...
传统离线策略训练方法、传统的在线搜索算法对麻将来说并不完全适用,于是腾讯AI Lab提出了ACH(actor critic hedge)的新型策略优化算法。 据了解,该算法采用了基于强化学习和遗憾值最小化的自我博弈技术,使AI能从零开始自我学习和提高。 该算法具备传统强化学习可扩展性好(算的快)的优点,又部分继承了遗憾值最小化算法...
4月25日,腾讯AI Lab宣布棋牌类AI“绝艺”取得新突破,在1v1麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将benchmark已通过论文开源,并被机器学习顶...
4月 25 日,腾讯 AI Lab 宣布棋牌类 AI「绝艺」取得新突破,在 1v1 麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法 Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将 benchmark 已通过论文开源...
4月 25 日,腾讯 AI Lab 宣布棋牌类 AI「绝艺」取得新突破,在 1v1 麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将 benchmark 已通过论文开源,...
4月 25 日,腾讯 AI Lab 宣布棋牌类 AI「绝艺」取得新突破,在 1v1 麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法 Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将 benchmark 已通过论文开源...
4月25日,腾讯AI Lab宣布棋牌类AI“绝艺”取得新突破,在1v1麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将benchmark已通过论文开源,并被机器学习顶...
4月 25 日,腾讯 AI Lab 宣布棋牌类 AI「绝艺」取得新突破,在 1v1 麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法 Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将 benchmark 已通过论文开源...
4月 25 日,腾讯 AI Lab 宣布棋牌类 AI「绝艺」取得新突破,在 1v1 麻将(二人雀神)测试中战胜职业冠军选手。团队在大规模强化学习算法框架下提出了一个新的策略优化算法 Actor-Critic Hedge (ACH),部分解决了大规模深度强化学习自博弈收敛不到纳什均衡最优解的问题。该算法及对应二人麻将 benchmark 已通过论文开源...
传统离线策略训练方法、传统的在线搜索算法对麻将来说并不完全适用,于是腾讯AI Lab提出了ACH(actor critic hedge)的新型策略优化算法。 据了解,该算法采用了基于强化学习和遗憾值最小化的自我博弈技术,使AI能从零开始自我学习和提高。 该算法具备传统强化学习可扩展性好(算的快)的优点,又部分继承了遗憾值最小化算法...