本系统采用了基于深度学习的目标检测算法YOLOv5,该算法是YOLO系列算法的较新版本,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题。此外,YOLOv5还引入了一种称为SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况...
摘要:基于深度学习的高精度鸟类目标(鹦鹉(Crested Myna)、麻雀(Eurasian Tree Sparrow)、黑头文鸟(Chestnut Munia)、白领翡翠(Collared Kingfisher)、太阳鸟(Garden Sunbird))检测识别系统可用于日常生活中或野外来检测与定位鸟类目标目标,利用深度学习算法可实现图片、视频、摄像头等方式的鸟类目标目标检测识别,另外支持结...
鸟类细粒度识别面临的关键挑战,在于不同种类之间的差异往往十分细微。“为精准区分鸟类,我们自主研发了基于深度学习的细粒度识别算法,并构建了涵盖国内1200种鸟类的图像数据集。通过持续改进与优化,该算法能够克服光照、距离等不利条件影响因素,从而实现对不同鸟类种类的精准识别。”王洪昌解释道。 对外观相似或极为稀有...
测试:在测试阶段,将待识别的鸟类图像输入到训练好的GoogLeNet模型中,通过前向传播得到图像的类别预测结果。 基于GoogLeNet深度学习的鸟类识别系统利用卷积神经网络的强大特征表示能力,能够准确地从图像中识别出鸟的种类。通过引入Inception模块,GoogLeNet能够在同一层内学习不同尺度的特征,提高了特征的丰富性和判别性。该系统...
摘要:鸟类识别是深度学习和机器视觉领域的一个热门应用,本文详细介绍基于YOLOv5的鸟类检测识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中可以选择各种鸟类图片、视频以及开启摄像头进行检测识别;可通过UI界面选择文件,切换标记识别目标,支持切换模型,支持用户登录注册界面;基于YOLOv5模型训练...
基于深度学习的鸟类检测识别系统(yolov5)共计6条视频,包括:基于深度学习的鸟类检测识别系统yolov5、环境安装-GPU、环境安装-CPU等,UP主更多精彩视频,请关注UP账号。
鸟类识别是计算机视觉领域中的一个重要应用,它要求系统能够准确地从图像或视频中识别出鸟的种类。随着深度学习技术的发展,特别是卷积神经网络(CNN)的广泛应用,鸟类识别的准确率得到了显著提升。GoogLeNet作为一种经典的深度学习模型,在图像分类任务中表现出了优异的性能。
ResNet50指的是该网络有50层深度,主要由卷积层、池化层、批归一化层(Batch Normalization)和残差块(Residual Blocks)组成。残差块的引入使网络能够学习到残差,即目标输出与输入之间的差异,而不是直接学习输入到输出的映射,这样可以加快网络的收敛速度,并提升模型的准确性。在每个残差块中,输入经过若干卷积层后会被直...
迁移学习:使用在大规模数据集上预训练的YOLO模型作为起点,对其进行微调以适应特定的鸟类识别任务。这一策略大大加速了模型训练过程,同时保持了高识别准确率。 技术框架和开发工具 PyTorch框架:采用PyTorch作为主要的深度学习框架,得益于其灵活的编程环境和优秀的GPU加速能力,PyTorch非常适合于深度学习模型的开发和迭代。
摘要:本文介绍了一种基于深度学习的鸟类识别系统系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果·,能够准确识别图像、视频、实时视频流以及批量文件中的鸟类。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集,以及基于PySide6的用户界面(UI)。该系统实现了对...