3.2 GMM与K-Means相比 高斯混合模型与K均值算法的相同点是: 它们都是可用于聚类的算法; 都需要 指定K值; 都是使用EM算法来求解; 都往往只能收敛于局部最优。 而它相比于K 均值算法的优点是,可以给出一个样本属于某类的概率是多少;不仅仅可以用于聚类,还可以用于概率密度的估计;并且可以用于生成新的样本点。 4...
K-means无法将两个均值相同(聚类中心点相同)的类进行聚类,而高斯混合模型(Gaussian Mixture Model, GMM)就是为了解决这一缺点而提出的。GMM是通过选择成分最大化后验概率来完成聚类的,各数据点的后验概率表示属于各类的可能性,而不是判定它完全属于某个类,所以称为软聚类。其在各类尺寸不同、聚类间有相关关系的...
聚类分析:GMM通过拟合数据中的高斯分布,将数据点划分为不同的类别。相比于K-means等聚类算法,GMM能够处理更复杂的数据分布,并且不需要事先指定聚类数量。 密度估计:GMM可以用于估计数据的概率密度函数。通过计算每个高斯分布在数据点处的概率密度,并将它们按权重相加,可以得到数据点的总概率密度。 异常检测:由于GMM能够...
最后我们总结一下gmm与其他聚类算法的优缺点: 优点: 与假设球形簇的k-means不同,由于协方差分量,gmm可以适应椭球形状。这使得gmm能够捕获更多种类的簇形状。 由于使用协方差矩阵和混合系数,可以处理不同大小的聚类,这说明了每个聚类的分布和比例。 gmm提供了属于每个簇的每个点的概率(软分配),这可以在理解数据时提...
基于分布的聚类方法《高斯混合模型 GMM》算法共计7条视频,包括:01-《高斯混合模型》-课程概述、02-《高斯混合模型》-算法初探-初步理解、03-《高斯混合模型》-算法初探-初步使用等,UP主更多精彩视频,请关注UP账号。
如何用高斯混合模型 GMM 做聚类 当我们在做聚类任务时, 如果每一类的分布已知的话,那么要求出每个样本属于哪一类, 只需要计算出它归属于 k 个不同簇的概率,然后选择概率值最高的那个簇作为它最终的归属即可。 但很多时候,样本分布的参数乃至概率密度函数的形式都是未知的 这时,我们通过设定一个目标,在优化目标的...
1,原型聚类:K-means 2,模型聚类:高斯混合聚类(GMM) 3,其他聚类形式 三、code:K-means 一、聚类概述: 在无监督学习中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据内在的性质及规律,其中,应用最广的是聚类算法。 聚类的一个重要应用是用户的分组与归类。
高斯混合模型(Gaussian Mixed Model,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布(又叫正态分布)的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。 第一张图是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图...
高斯混合模型(Gaussian Mixed Model,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布(又叫正态分布)的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。 第一张图是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图...
高斯混合模型(gmm)是将数据表示为高斯(正态)分布的混合的统计模型。这些模型可用于识别数据集中的组,并捕获数据分布的复杂、多模态结构。 gmm可用于各种机器学习应用,包括聚类、密度估计和模式识别。 在本文中,将首先探讨混合模型,重点是高斯混合模型及其基本原理。然后将研究如何使用一种称为期望最大化(EM)的强大技...