一种是利用相同的训练数据同时搭建多个独立的分裂模型,然后通过投票的方式,以少数服从多数的原则作出最终分类的决策,典型的有随机森林分类器(Random Forest Classifier),即在相同的训练数据上同时搭建多棵决策树(Decision Tree),每棵决策树会放弃固定的排序算法,随机选取特征。 另一种是按照一定的次序搭建多个分类模型。...
可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选...