占比:80.98% 访问频率和预定频率都较低,消费水平较低,对酒店星级要求不高,客户群体多集中在新客户中,客户价值待挖掘 建议: 因为新用户居多,属于潜在客户,建议把握用户初期体验(如初期消费有优惠、打卡活动等),还可以定期推送实惠的酒店给此类用户,以培养用户消费惯性为主; 推送的内容应多为大减价、大酬宾、跳楼价...
分离自变量和因变量。 划分训练集和测试集。 使用不同的机器学习模型,包括逻辑回归、决策树、随机森林、XGBoost和支持向量机进行训练和预测。 绘制混淆矩阵以评估模型性能。 绘制决策树的树状图。 创建模型性能汇总表,包括训练准确率和模型准确率得分。 使用随机森林和决策树模型进行预测,并将实际值和预测值进行对比。
Lijie Zhang逻辑思辨能力强,考虑问题全面,熟练掌握数据清洗和数据预处理、绘图和可视化展示,熟悉机器学习 sklearn, xgboost 等库进行数据挖掘和数据建模,掌握机器学习的线性回归、逻辑回归、主成分分析、聚类、决策树、随机森林、 xgboost、 svm、神经网络算法。 本文摘选《PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随...
Lijie Zhang逻辑思辨能力强,考虑问题全面,熟练掌握数据清洗和数据预处理、绘图和可视化展示,熟悉机器学习 sklearn, xgboost 等库进行数据挖掘和数据建模,掌握机器学习的线性回归、逻辑回归、主成分分析、聚类、决策树、随机森林、 xgboost、 svm、神经网络算法。 本文摘选 《 PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST...
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像|附代码数据,在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上“用户就是上帝”促使众多的企业不惜代价去争夺尽可能多
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像|附代码数据 大数据数据挖掘决策树神经网络 在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上 拓端 2023/03/13 2430 【视频】支持向量机算法原理和Python用户流失数据挖掘...
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
本项目的核心目标是评估和对比多种机器学习分类算法在解决“Make Moons”数据集上的表现。 本项目通过决策树分类模型、支持向量机分类模型、随机森林分类模型和XGBoost分类模型实现月亮数据标签预测。 2.数据获取 本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下: ...
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
拓端tecdat:Python用户流失数据挖掘:建立逻辑回归、XGboost、随机森林、决策树、支持向量机、朴素贝叶斯模型和Kmeans用户画像 1.1 项目背景: 在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上。“用户就是上帝”促使众多的企业不惜代价去争夺尽可能多的客户。但是企业在不惜代价...