分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。 若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
2,P{-1〈X〈1}=F(1)-F(-1)=bxpi/4+bXpi/4=1/2 比如:设随机变量X的分布函数为f(x)=0,x 显然: 因为f(+∞)=1 所以可知A=1 2.X的概率密度: 由分布函数得 g(x)=f'(x) =cosx ,0 本文仅代表作者观点,不代表百度立场。未经许可,不得转载。来自山西龙采 推荐教育机构 小诸葛家教(郑州校区...
定义 一般地,如果存在一个函数 ,使得随机变量X,Y满足 , 则称随机变量Y是随机变量X的函数. 二、离散型随机变量函数的分布 离散型随机变量X的函数 显然还是离散型随机变量. 设X是离散型随机变量,其概率分布为 或 Y是X的函数, ,则Y也是离散型随机变量,它的取值为y1,y2,L,yn,L 其中yn=g(xn)(n=1,2,L...
一、随机变量的函数二、离散型随机变量函数的分布三、连续型随机变量函数的分布 1 一、随机变量的函数 随机变量的函数 如果存在一个函数g(x)使得随机变量XY满足 Yg(X)(289)则称随机变量Y是随机变量X的函数 如何从自变量X的统计规律导出其函数Yg(X)的统计规 律呢?对任意区间(或区间的并)B令C{x|g(x)B}...
连续型随机变量函数的分布 对变换Y=g(X), 显然Y的分布特点由X的分布和变换g的性质决定. 当Y仍为随机变量时, 其分布函数显然与X的密度函数之间有如下关系: F1(y)=P(Y⩽y)=P(g(X)⩽y)=∫g(x)⩽yf(x)dx我们还有如下推论: 若g(x)是严格单调的且反函数可导时, 则随机变量Y仍为连续型随机变量...
2.5随机变量函数的分布 一、随机变量的函数 在讨论正态分布与标准正态分布的关系时,已知有结“设随机变量X~N(,2),则随机变量论:Y X 对X的每一个取值,Y有唯一确定的取值与之对应. .~N(0,1)”这里,Y是随机变量X的函数,由于X是随机变量,其取值事先不确定,因而Y的取 值也...
设随机变量 具有概率密度 求随机变量 的概率密度。 解:分布函数求导法 ①第一步: ②第二步: 此时, 是分段函数,因此要对 在分段函数中进行讨论。 因此就有 设随机变量X具有概率密度 求随机变量 的概率密度。 ① 当 是不可能事件,故 当 综上所述,就有: ...
§3.4随机变量函数的分布 定义:若存在一个函数g(X),使得R.V.X,Y满足Y=g(X),则称R.V.Y是X的函数。概率论中主要研究随机变量函数的随机性特征即由R.V.X的统计性规律出发研究其连续函数Y=g(X)的统计性规律.此时,Y也是R.V..一、离散型随机变量函数分布列的求法(同一表格法)设离散型r.v.X的...
2.6.2连续随机变量函数的分布 Y=aX+b~N(a+b,a22).Y=kX~Ga(,/k).1.公式法正态分布N(,2)的峰度2=0.X—乘客于某时X分钟到达,则XU(0,60)所以X大于xp的可能性为1p.定理2.6.1设X~p(x),取值范围为[c,d];y=g(x)将g(xi)一一列出,再将相等的值合并即可.k阶原点矩:k=E(Xk),k=1...
变量分布的重要性 描述随机现象 随机变量的分布可以用来描述随机现象的特性,例如概率密度函数可以描述连续型随机变量的取值规律。预测和决策 通过分析随机变量的分布,可以对随机现象进行预测和决策,例如利用概率分布进行风险评估和决策。统计推断 通过分析随机变量的分布,可以进行统计推断,例如参数估计和假设检验等。02 ...