用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化 PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像 PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化 R语言集成模型:提升树boosting、随机森林、约束最小...
随机森林算法可以用于分类和回归问题。随机森林的应用场景包括图像识别、金融欺诈检测等。 支持向量机 支持向量机是一种用于分类和回归问题的机器学习算法。它基于最大化分类器的边际(margin)的思想,以找到一个超平面来分离不同的类别。支持向量机的应用场景包括手写数字识别、股票预测等。 K近邻 K近邻是一种基于距离度...
逻辑回归的思想就是 在线性回归上再做一次函数转换,对线性回归的结果做一个在函数上的转换,变化为逻辑回归。这个函数一般取为sigmoid函数,经常用来解决二分类问题,也可以解决多分类问题,主要有两种实现策略,一种是为每个类别创建一个sigmod分类器,再进行整合,另一种是就用一个digmod分类器,同时基于softmax思想为每个...
划分训练集和测试集。 使用不同的机器学习模型,包括逻辑回归、决策树、随机森林、XGBoost和支持向量机进行训练和预测。 绘制混淆矩阵以评估模型性能。 绘制决策树的树状图。 创建模型性能汇总表,包括训练准确率和模型准确率得分。 使用随机森林和决策树模型进行预测,并将实际值和预测值进行对比。 3.效果 编辑 ...
Lijie Zhang逻辑思辨能力强,考虑问题全面,熟练掌握数据清洗和数据预处理、绘图和可视化展示,熟悉机器学习 sklearn, xgboost 等库进行数据挖掘和数据建模,掌握机器学习的线性回归、逻辑回归、主成分分析、聚类、决策树、随机森林、 xgboost、 svm、神经网络算法。
5.R语言混合效应逻辑回归Logistic模型分析肺癌 6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现 7.R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病 8.python用线性回归预测股票价格 9.R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测...
逻辑回归 # 逻辑回归模型 - 使用所有变量fultaog = glm summary(fulog) fldaog = glmsummary(fuatLg) prdts = predict glm_le <-table ACCU 随机森林 rfoel<-randomForest# 获得重要性imprace # 选择重要的因素rfmdel<-randomForest# 误差plot
sum(TeYaHD==0) 针对这一现象,需要采取方法平衡数据集。 数据获取 在下面公众号后台回复“心脏病风险数据”,可获取完整数据。 本文摘选《R语言逻辑回归、随机森林、SVM支持向量机预测FRAMINGHAM心脏病风险和模型诊断可视化》,点击“阅读原文”获取全文完整资料。
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病 左右滑动查看更多 01 02 03 04 由上图可以看出,除了glucose变量,其它变量的缺失比例都低于5%,而glucose变量缺失率超过了10%。对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值, ...
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病 左右滑动查看更多 01 02 03 04 由上图可以看出,除了glucose变量,其它变量的缺失比例都低于5%,而glucose变量缺失率超过了10%。对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值, ...