1.将数组从中间分成两个子数组,分别递归地统计每个子数组的逆序对数量; 2.对两个子数组进行归并排序,并统计合并时的逆序对数量; 3.将得到的逆序对数量相加,得到最终的结果。 归并排序的时间复杂度为O(nlogn),其中n为数组的长度。 以下是一个示例代码,用于解决逆序对计数问题: ```python def count_inverse_pair...
第一部分:容易发现 \sum_{i=1}^n p_i^2 是个定值,所以我们只需找出有多少长度为 n 的排列逆序对个数恰好为 k ,这个我们前面讲过,定义 f_{i,j} 表示大小为 i 的排列,有 j 个逆序对的方案数,答案就是 f_{n,k}\sum_{i=1}^n i^2 ,这部分可以做到 O(nk)。 第二部分:不妨记 g_{i,j}...
基因排序:在生物信息学中,逆序对可以用于比较基因序列的相似性,帮助研究基因重组和进化过程。 暴力解法的时间复杂度是O(n2),而通过分治算法,时间复杂度可减少到O(nlogn). #region计数逆序对publicstatic(int,double[])SortAndCountInv(double[] values){if(values.Length <=1) {return(0, values); }inthalfS...
在探讨逆序对的计数问题时,我们首先要明确问题背景。给定一个排列,逆序对是指排列中存在一对元素,它们在排列中的相对位置与数值大小相反。问题提出的是在所有可能的排列中,计算特定长度下有多少排列恰好含有指定数量的逆序对。为解决这一问题,引入动态规划(DP)是一种有效策略。定义状态 $dp[i][j]...
逆序对计数问题的求解涉及多种方法和优化技巧。首先,我们面对的是计算给定序列长度的所有排列中,逆序对数为特定值的排列数。通过引入动态规划(dp),我们可以定义状态[公式],表示长度为[公式]的排列中,逆序对数为[公式]的排列数量。转移方程考虑了新元素[公式]插入时对逆序对数的影响,主要关注其插入...
首先来看一下问题详情: 看完题目与例子后,大家对逆序对计数问题有了一个大概的了解,对于这个问题,如果我们用普通的算法即循环嵌套比较能确实能解决,但是不够高效,我们使用分治策略能更有效的解决这个问题,并且在解决这个问题的过程中理解分治、递归等思想。
【C++】逆序对计数问题 还是分治的思想,解决方法利用了归并排序。具体可以看一下这篇博客。 第三章:分治II - 不妨不妨,来日方长 - 博客园 (cnblogs.com) C++代码如下,可以在VS直接运行。 #include<iostream>#include<vector>#include<algorithm>usingnamespacestd;intsort_merge_recursive(vector<int>& data,int...
分而治之篇:逆序对计数问题 童咏昕 北京航空航天大学 计算机学院 中国大学MOOC北航《算法设计与分析》 问题背景:逆序对 1 2 3 4 5 4 6 8 3 5 ⚫ 逆序对 ⚫ 当时 的二元组( , ) 如: , , , 问题背景:逆序对 1 2 3 4 5 且 [] 4 6 8 3 5 ⚫ 逆序对 ⚫ 当时 的二元组( , ) ⚫...
硬声是电子发烧友旗下广受电子工程师喜爱的短视频平台,推荐算法设计与分析:3.1 逆序对计数问题(1) 视频给您,在硬声你可以学习知识技能、随时展示自己的作品和产品、分享自己的经验或方案、与同行畅快交流,无论你是学生、工程师、原厂、方案商、代理商、终端商...上硬声A
算法设计与分析:3.1 逆序对计数问题(2)#硬声创作季 学习电子 157 11 算法设计:1.1 算法的基本概念(2)#硬声创作季 学习电子 200 11 算法设计与分析:10.2 最小生成树:Kruskal算法 下(3)#硬声创作季 学习电子 200 11 算法设计与分析:4.1 0-1背包问题 上(2)#硬声创作季 学习电子 200 11 算法设计与分析...