关于逆序对的定义:对于给定的一段正整数序列,逆序对就是序列中 ai>ajai>aj 且i<ji<j 的有序对。对于给定的一段正整数,试求出序列中逆序对的数目。注意序列中可能有重复数字。其中对于所有数据,n≤5×105n≤5×105。 一眼逆序对。我们可以考虑直接枚举,显然答案有:n∑i=1i−1∑j=1[ai<aj]∑i=1n...
只有自然排列(就是指1~n)没有逆序对,其他排列都有逆序对。逆序对的上限是n*(n-1)/2,下限是0。 2.有逆序对则必定有相邻的逆序对:证明:假设存在一对ai,aj满足i+1<j&&ai>aj的二元组,且不存在其他逆序对,则必须有ai<ai+1<ai+2…<aj-1。但是aj-1>ai>aj故aj-1,aj为一对相邻的逆序对,故假设错误...
首先,我们需要明白,为什么逆序对可以使用树状数组来求:其实,根据逆序对的定义,我们会发现:其实求解逆序对的过程就是在找一个序列中,在一个数的前面有多少比它大的数。那么,这种区间统计的题,完全可以使用树状数组这种数据结构来解决。 树状数组的功能就是单点修改,区间查询。那么,我们开一个树状数组 ...
第一部分:容易发现 \sum_{i=1}^n p_i^2 是个定值,所以我们只需找出有多少长度为 n 的排列逆序对个数恰好为 k ,这个我们前面讲过,定义 f_{i,j} 表示大小为 i 的排列,有 j 个逆序对的方案数,答案就是 f_{n,k}\sum_{i=1}^n i^2 ,这部分可以做到 O(nk)。 第二部分:不妨记 g_{i,j}...
是一对逆序对。我们接下来以洛谷P1908 逆序对为例,介绍求解逆序对数的求解方法。 题目简介 猫猫TOM 和小老鼠 JERRY 最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计。 最近,TOM 老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定义的:对于给定的一段正整...
首先,我们需要理解什么是逆序对。在一个排列中,如果前面的数字大于后面的数字,那么这两个数字就构成一个逆序对。例如,在排列2143中,21和43都是逆序对。在计算行列式时,我们通常会使用一种叫做“拉普拉斯展开”的方法。这种方法的基本思想是将行列式的值分解为一系列的项的乘积,每一项都对应于矩阵...
逆序对的求法 方法一:暴力双指针 这是一种非常暴力的方法,时间复杂度在O(n^2),若数据量小可以采用这个方法求 int nixu_count(int n, int a[]){ // n是元素个数 int cnt = 0; for(int i = 0; i < n; i++){ for (int j = i + 1; j < n; j++){ ...
在算法竞赛中,求逆序对是一个常见的问题。逆序对是指在一个数列中,如果存在 ,且 ,那么 就是一个逆序对。例如,数列 中的逆序对有 ,总共有 树状数组 树状数组(Fenwick Tree)是一种高效的数据结构,用于维护数列的前缀和。树状数组的主要优势在于可以快速对数列进行单点更新和区间查询,时间复杂度均为 ...
51CTO博客已为您找到关于逆序对算法的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及逆序对算法问答内容。更多逆序对算法相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。