在不管是最初版本的RCNN,还之后的改进版本——Fast RCNN和Faster RCNN都需要利用边界框回归来预测(矫正)物体的目标检测框,以提高最终的检测精度。因此掌握边界框回归(Bounding-Box Regression)是极其重要的,这是熟练使用RCNN系列模型的关键一步,也是代码实现中比较重要的一个模块。接下来,我们对边界框回归(Bounding
)我们重点介绍了RCNN和Fast RCNN中一个重要的模块——选择性搜索算法,该算法主要用于获取图像中大量的候选目标框。为了之后更加顺利理解RCNN模型,在这篇博文中我们将主要介绍RCNN及其改进版本——Fast RCNN和Faster RCNN中一个重要模块——边界框回归(Bounding-Box Regression)。 一、边界框回归简介 相比传统的图像...
在不管是最初版本的RCNN,还之后的改进版本——Fast RCNN和Faster RCNN都需要利用边界框回归来预测物体的目标检测框。因此掌握边界框回归(Bounding-Box Regression)是极其重要的,这是熟练使用RCNN系列模型的关键一步,也是代码实现中比较重要的一个模块。接下来,我们对边界框回归(Bounding-Box Regression)进行详细介绍。
D-FINE 的出现,为目标检测带来了全新的思路。通过引入 FDR 和 GO-LSD,D-FINE 重新定义了目标检测中的边界框回归任务。这种创新有望突破当前的瓶颈,为实时目标检测领域提供新的发展方向。
边界框回归 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较多,后面的两条我看了很多paper,才得出...
边界框回归(Bounding Box Regression)是物体检测中重要的一项任务,之前大部分的物体检测模型是直接对边界框的位置(中心点)和大小(宽和高)进行回归,采用的损失函数往往是L1 norm和L2 norm,比如YOLOv1采用平方差损失,Faster RCNN采用smooth L1损失。不过近来的工作发现,直接采用IoU损失往往能得到更好的效果,因为IoU也是...
边界框回归(Bounding Box Regression)是物体检测中重要的一项任务,之前大部分的物体检测模型是直接对边界框的位置(中心点)和大小(宽和高)进行回归,采用的损失函数往往是L1 norm和L2 norm,比如YOLOv1采用平方差损失,Faster RCNN采用smooth L1损失。不过近来的工作发...
为了打破这一瓶颈,来自中科大的研究团队提出了 D-FINE,重新定义了边界框回归任务。 不同于传统的固定坐标预测,D-FINE 创新了两种方法:细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)。通过将回归任务转化为细粒度的分布优化任务,D-FINE 不仅显著简化了优化难度,还能够更精确地建模每条边界的不确定性。 此外,...
为什么要边框回归 如图1所示,绿色的框表示真实值Ground Truth, 红色的框为Selective Search提取的候选区域/框Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 这张图也相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调fine-tuning,使得经过微调后的窗口跟Ground...
在目标检测领域,边界框回归起着至关重要的作用,而目标检测的定位精度很大程度上取决于边界框回归的损失函数。现有研究通过利用边界框之间的几何关系来提高回归性能,而忽略了难以和容易样本分布对边界框回归的影响。在这篇文章中,作者分析了难以和容易样本分布对回归结果的影响,然后提出了Focaler-IoU,通过关注不同的回归...