辛普森(Simpson)公式是牛顿-科特斯公式当n=2时的情形,也称为三点公式。利用区间二等分的三个点来进行积分插值。其科特斯系数分别为1/6,4/6,1/6。 计算实例 例1:计算底面积为S、高为h的柱体的体积。 解:此题中S_1 = S_0 = S_2 = S,H = h,所以V = H (S_1 + 4S_0 + S_2) /6 = h ...
先分治地用辛普森积分求出左边、右边的面积。 如果(S-(l+r))<eps,那就说明近似地很够了 否则,就继续分治到下面,区间越小,精度就越高。 这就是自适应辛普森积分。好像挺简单的。 但也有可能辛普森积分求出来的S L R虽然和实际情况很不一样, 但是求的差S-(L+R)却非常小。所以这个方法不能够保证任意函数...
# 计算机参考值0.6321205588 print("积分结果为:{:.5f}".format(R[-1])) 补充拓展:python实现数值分析之龙贝格求积公式 复合梯形公式的提出: 1.首先,什么是梯形公式: 梯形公式表明:f(x)在[a,b]两点之间的积分(面积),近似地可以用一个梯形的面积表示。 2.显然,这个梯形公式对于不同的f(x)而言,其代数精度...
1. 用不同数值方法计算积分 (1) 取不同的步长h. 分别用复合梯形及复合辛普森求积计算积分, 给出误差中关于h的函数, 并与积分精确值比较两个公式的精度, 是否存在一个最小的h, 使得精度不能再被改善? (2) 用龙贝格求积计算完成问题(1). (3) 用自适应辛普森积分, 使其精度达到10−4. ...
通常情况下,积分复合辛普森公式的精度要比辛普森公式的精度高。 例如,我们可以使用积分复合辛普森公式来计算下列函数在区间[0,1]内的积分: $$ \int_0^1 x^2 dx $$ 我们可以将区间[0,1]划分为若干个小区间,然后使用辛普森公式来计算每个小区间的积分近似值。例如,我们可以将区间[0,1]划分为5个小区间,...
百度爱伴功提供各种日常工作模板和学习资料,主要内容包含:定积分计算例题、定积分基本公式、matlab辛普森法求积分、定积分的运算公式、定积分求面积