小伍哥聊风控:一文搞懂Python库中的5种贝叶斯算法 在scikit-learn库,根据特征数据的先验分布不同,给我们提供了5种不同的朴素贝叶斯分类算法(sklearn.naive_bayes: Naive Bayes模块),分别是伯努利朴素贝叶斯(BernoulliNB),类朴素贝叶斯(CategoricalNB),高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)、补充朴素贝...
在贝叶斯网络中,BIC是一种常用的评分函数之一,用于评估贝叶斯网络与数据的拟合程度。 BDeu是贝叶斯-狄利克雷等价一致先验(Bayesian-Dirichlet equivalent uniform prior)的缩写。它是一种常用的评分函数之一,用于评估贝叶斯网络与数据的拟合程度。BDeu评分函数基于贝叶斯-狄利克...
一、基于原生Python实现朴素贝叶斯(Naive Bayes) 朴素贝叶斯(Naive Bayes)算法是一种基于概率论和贝叶斯定理的分类算法。它的核心思想是,对于给定的数据集,通过先验概率和条件概率计算出每个类别的后验概率,然后将样本分配给具有最大后验概率的类别。 朴素贝叶斯算法有多种变体,其中最常见的包括 高斯朴素贝叶斯、多项式朴...
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文由本人学习贝叶斯分类器过程中的笔记,再加上使用Python进行文本分类实战组成。 1. 贝叶斯决策论(Bayesian decision theory) 贝叶斯决策论是概率框架下实施决策的基本方法。对于分类任务来说,在所有相关概率都已知的情况下,贝叶斯决策...
贝叶斯优化在概念上可能看起来复杂,但一旦实现,它会变得更简单。在这一部分中,我将提供贝叶斯优化工作原理的概念性概述,然后我们将实施它以更好地理解。 贝叶斯优化利用贝叶斯技术对目标函数设置先验,然后添加一些新信息以得到后验函数。 先验表示在新信息可用之前我们所知道的...
Python 1 Loaded data file iris.data.csv with 150 rows 下一步,我们将数据分为用于朴素贝叶斯预测的训练数据集,以及用来评估模型精度的测试数据集。我们需要将数据集随机分为包含67%的训练集合和包含33%的测试集(这是在此数据集上测试算法的通常比率)。 下面是splitDataset()函数,它以给定的划分比例将数据集...
1. 贝叶斯推断 贝叶斯推断是贝叶斯统计的核心方法之一,它使用贝叶斯公式来计算后验概率,并通过更新先验概率来获得更准确的估计值。在Python中,可以使用PyMC3库进行贝叶斯推断分析。 1.1 先验分布 先验分布是贝叶斯推断的关键部分,它代表了对未知参数的初始信念。在PyMC3中,我们可以使用各种概率分布(如正态分布、均匀分布...
一、贝叶斯定理 假设对于某个数据集,随机变量C表示样本为C类的概率,F1表示测试样本某特征出现的概率,套用基本贝叶斯公式,则如下所示: 上式表示对于某个样本,特征F1出现时,该样本被分为C类的条件概率。那么如何用上式来对测试样本分类呢? 举例来说,有个测试样本,其特征F1出现了(F1=1),那么就计算P(C=0|F1=...
下面就从一个简单的例子入手,来进一步理论结合Python学习如何进行贝叶斯统计。抛硬币问题 抛硬币是统计学中的一个经典问题,其描述如下:我们随机抛一枚硬币,重复一定次数,记录正面朝上和反面朝上的次数,根据这些数据,我们需要回答诸如这枚硬币是否公平,以及更进一步这枚硬币有多不公平等问题。抛硬币是一个学习...
在这里,我们将帮助客户将 PyMC3 用于两个贝叶斯推理案例研究:抛硬币和保险索赔发生。 方法: 回想一下,我们最初的贝叶斯推理方法是: 设置先前的假设,并根据启发式、历史或样本数据建立我们数据的“已知已知”。 形式化问题空间和先前假设的数学模型。 正式化先前的分布。