它的计算公式为:F1-Score = 2 (Precision Recall) / (Precision + Recall)。F1-Score的优点在于它综合考虑了精确度和召回率,使得模型在不平衡分类问题中的性能评估更为准确。在语义分割任务中,F1-Score能够帮助我们了解模型在各类别上的综合表现。 综上所述,MIoU, IoU, Accuracy, Precision, Recall和F1-Score等...
$$recall = \frac{TP}{TP + FN} = \frac{Area(pred \cap true)}{Area(true)}$$ F1分数(F1-Score),又称为平衡F分数(BalancedScore),它被定义为精确率和召回率的调和平均数。 $$F_1 = 2 * \frac{precision * recall}{precision + recall}$$ IOU(Intersection over Union)交并比。计算真实值和预测...