分析:化简函数f(x),通过平移,画出函数f(x)的图象,从而判定间断点的特征. 解答: 解:∵f(x)= x-1 x-2= x-2+1 x-2=1+ 1 x-2,∴函数f(x)的图象是由函数y= 1 x的图象向右平移2个单位,再向上平移1个单位得到的,如图所示,;∴x=2为f(x)的无穷间断点;故选:D. 点评:本题考查了函数在某一...
【答案】:D 解析:因为f(x)=x*(x-1)*(x-2)...(x-99)(x-100)所以f(0)=0 所以f′(0)=lim(x→0)[f(x)-f(0)]/(x-0)=lim(x→0)f(x)/x =lim(x→0)[x*(x-1)*(x-2)...(x-99)(x-100)]/x =lim(x→0)(x-1)*(x-2)...(x-99)(x-100)=(0-1)*(0...
f(x)=x(x-1)(x-2)=x³-3x²+2x f'(x)=3x²-6x+2 b²-4ac=12>0 所以f'(x)有两个实根
解:∵f(x)=x(x-1)(x-2)…(x-99)=x[(x-1)(x-2)…(x-99)], ∴f′(x)=x′[(x-1)(x-2)…(x-99)]+x[(x-1)(x-2)…(x-99)]′ =[(x-1)(x-2)…(x-99)]+x[(x-1)(x-2)…(x-99)]′, ∴f′(0)=[(-1)×(-2)×…•×(-99)]+0×[(x-1)(x-2)…(x...
你这个题应该是求的某一点处的导数值吧,如果是求f'(0)就是如下的过程:
解;对函数f(x)=x(x-1)(x-2)化简,得,f(x)=x 3 -3x 2 +2x,求导,得,f'(x)=3x 2 -6x+2 ∴f'(0)=3×0-6×0+2=2 故答案为:2.
f(x)=x(x-1)(x-2)...(x-100)f'(x)=x ' *[(x-1)(x-2)...(x-100)]+x[(x-1)(x-2)...(x-100)]‘=(x-1)(x-2)...(x-100)+x[(x-1)(x-2)...(x-100)]‘同样的把(x-2)...(x-100)再次看成一个整体求导 一步一步的类推...
高阶导数的求解。
f(x)的最高次项是x^(n+1),其余项的次数均低于(n+1),n+1阶求导后均为0 x^(n+1)一阶导数=(n+1)x^n x^(n+1)二阶导数=(n+1)nx^(n-1)...x^(n+1)n+1阶导数=(n+1)!x^(1-1)=(n+1)!∴f(x)=x(x-1)(x-2)...(x-n)的n+1阶导函数=(n+1)!
2. x = 1:计算f(1) = 1|1(1-1)(1-2)^2 = 0,此时f(x)在x=1的值为0。左极限:lim(x→1-) [f(x) - f(1)] / (x - 1) = lim(x→1-) [f(x) - 0] / (x - 1) = lim(x→1-) [x|x(x-1)(x-2)^2|] / (x - 1) = lim(x→1-) |(x)...