这个正方形的对角线把它分成四个直角三角形,每个三角形的底和高都等于圆的半径,所以正方形的面积是:r×r÷2×4=2r2 . 25.12÷3.14÷2=4 3.14×4×4-2×4×4=18.24故答案为: 18.24 如右图,这个图中的阴影部分的面积等于圆面积减去中间的正方形的面积,这个正方形的对角线把它分成四个直角三角形,每个三...
解析 解:S=1/4*π*4^2-1/2*π*(4/2)^2=4π-2π=2π≈6.28(cm^2)答:阴影部分面积为6.28cm^2。本题考查不规则图形的面积;圆的面积公式:S=π*r^2由图形可以看出,阴影部分是半径为4cm的圆的面积的1/4减去直径为4cm的圆的面积的1/2得到的。利用圆的面积公式计算就可以解决。
include<stdio.h>#define PI 3.14159int main() { int a,n; float s; scanf("%d%d",&a,&n); s=(a*a-PI*a*a/4)*n*n; printf("%.2f",s); } 不懂可问
答:阴影的面积是36.48平方分米.(3)圆的半径:8÷2=4(厘米)圆的面积:3.14×42=50.24(平方厘米)正方形的面积:8×4÷2×2=32(平方厘米)阴影部分的面积:50.24-32=18.24(平方厘米)答:阴影的面积是18.24平方厘米. (1)阴影的面积=半径为10厘米的半圆面积-半径为4厘米的半圆面积,运用圆的面积公式解答即可.(2)...
阴影部分的面积=平行四边形的面积÷2=15×4÷2;故选:C. 因为等底等高的三角形面积相等,则平行四边形的一条对角线将其分成两个面积相等的三角形,从而问题得解. 本题考点:三角形的周长和面积;平行四边形的面积. 考点点评:此题主要考查三角形的面积是与其等底等高的平行四边形面积的一半. 解析看不懂?免费查...
百度试题 结果1 题目【题目】11.计算阴影部分的面积C 相关知识点: 试题来源: 解析 【解析】 反馈 收藏
2.计算下面各图中阴影部分的面积。 (单位:c 相关知识点: 试题来源: 解析 3.14×(10÷2)2×2=157(cm2)10×10=100(cm2)157-100=57(cm2)答:阴影部分的面积是57cm2。6×6÷2=18(cm2)4×4÷2=8(cm2)18+8=26(cm2)答:阴影部分的面积是26cm2。答案57cm226cm22.57cm2 26cm2 ...
答:图中阴影部分的面积41.04平方厘米. (3)大圆直径:75.36÷3.14=24(厘米) 正方形面积:24×24÷2=288(平方厘米) 小圆面积:3.14×(288÷4) =3.14×72 =226.08(平方厘米) 答:阴影部分的面积是226.08平方厘米. (4)3.14×(4÷2)2×2-4×4 =25.12-16 ...
分析:观察图形可知,阴影部分的面积等于这个长方形的面积减去空白处的直径为4厘米的半圆的面积之差,据此计算即可解答问题. 解答:解:6×4-3.14×(4÷2)2÷2 =24-3.14×4÷2 =24-6.28 =17.72(平方厘米) 答:阴影部分的面积是17.72平方厘米. 点评:此题考查了不规则图形的面积的计算方法,一般都是转化到规则图形...
答:阴影部分的面积是86平方厘米. 观察图形,阴影部分分为4部分,其中每一部分的面积都是边长为10厘米的正方形的面积与半径是10厘米的 1 4圆的面积之差,据此求出一部分的面积,再乘4即可求出这个图形中的阴影部分的面积. 本题考点:组合图形的面积 考点点评:此题考查了组合图形的面积的计算方法,一般都是转化到...