对初始值敏感:K-means算法对初始聚类中心的选择非常敏感,不同的初始值可能会导致不同的聚类结果。这意味着算法的稳定性较差,容易陷入局部最优解。 对异常值和噪声敏感:由于K-means算法是基于距离进行聚类的,因此当数据集中存在异常值或噪声时,可能会导致聚类效果变差。 K-means算法的改进方法: 使用K-means++初始化...
在数据挖掘和机器学习领域,K - Means 聚类算法以其简单高效的特性而被广泛应用。然而,随着数据规模的不断增大和数据类型的日益复杂,K - Means 算法也暴露出了一些局限性。本文将深入探讨 K - Means 聚类算法的改进方向,旨在为相关研究和实践提供有价值的参考。一、K - Means 算法的基本原理与局限性 K - Me...
可以说这也符合我们的直觉:聚类中心当然是互相离得越远越好。这个改进虽然直观简单,但是却非常得有效。 经典K-means算法: 值得一提的是关于聚类中心数目(K值)的选取,的确存在一种可行的方法,叫做Elbow Method: 通过绘制K-means代价函数与聚类数目K的关系图,选取直线拐点处的K值作为最佳的聚类中心数目。 上述方法中的...
研究和分析了聚类算法中的经典K-均值聚类算法,总结出其优点和不足。重点分析了K-均值聚类算法对初始值的依赖性,并用实验验证了随机选取初始值对聚类结果的影响性。根据传统的K-means算法存在的缺陷,提出了改进后的K-means算法,主要解决了孤点对聚类中心影响的问题以及K值的确认问题。 2.测试软件版本以及运行结果展示...
1.程序功能描述 K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法...
(2)K-Means 模型设置 1)NumbeRs of clusteR:制定生成的聚类数目,这里设置为3. 2)定义了分割数据集,选择训练数据集作为建模数据集,并利用测试数据集对模型进行评价。 (3)执行和输出 设置完成后,选中Execute 按钮,即可得到改进聚类执行并观察到结果。
相似性度量的改进 在前面确定了k值以及k个初始聚类中心后,只要再确定相似性度量即可得到聚类结果。然而传统的K-means聚类采用欧氏距离作为相似性度量,这种方法没有很好地考虑到其实每个数据样本对聚类结果的影响可能是不同的,一律采用欧氏距离进行相似性衡量对聚类结果会产生较大影响。那么,我们如果根据数据样本的重要性对...
相似性度量的改进 在前面确定了k值以及k个初始聚类中心后,只要再确定相似性度量即可得到聚类结果。然而传统的K-means聚类采用欧氏距离作为相似性度量,这种方法没有很好地考虑到其实每个数据样本对聚类结果的影响可能是不同的,一律采用欧氏距离进行相似性衡量对聚类结果会产生较大影响。那么,我们如果根据数据样本的重要性对...
摘要:K-means算法是最常用的一种基于划分的聚类算法,但该算法需要事先指定K值、随机选择初始聚类中心等的缺陷,从而影响了K-means聚类结果的稳定性。针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法确定初始聚类中心,然后进行聚类,得出最终的聚类结果。实验证明,该改进算法比随机选择初始聚...
相似性度量的改进 在前面确定了k值以及k个初始聚类中心后,只要再确定相似性度量即可得到聚类结果。然而传统的K-means聚类采用欧氏距离作为相似性度量,这种方法没有很好地考虑到其实每个数据样本对聚类结果的影响可能是不同的,一律采用欧氏距离进行相似性衡量对聚类结果会产生较大影响。那么,我们如果根据数据样本的重要性对...