推荐系统,对于我们来说并不陌生,它已经无时无刻不方便着我们的生活、学习、工作等方方面面,并且已经成为许多社交/购物/新闻平台中必不可少的组件。近些年来学术界以及工业界的研究者们已经对其进行了大量研究并…
刚才提到,对于联邦推荐系统,需要进行优化与上传更新的基本是全部物品的Embedding矩阵,因为用户终端只需要存储个人的Embedding向量即可,而不需要考虑其他用户向量。因此本文利用强化学习来挑选能够使得反馈具有正向收益的物品向量来进行更新。 更具体的,首先通过贝叶斯汤姆森采样(BTS)bandit来得到物品的子集 Ms ,获得的这些物品...
目前,推荐系统是消费领域最常见的机器学习算法之一[1]。以网络新闻为例,由于每天都有大量的新闻文章发布在网上,在线新闻服务的用户面临着严重的信息过载。不同的用户通常喜欢不同的新闻信息。因此,个性化新闻推荐技术被广泛应用于用户的个性化新闻展示和服务中。关于新闻的推荐算法 / 模型研究已经引起了学术界和产业...
3.3 联邦推荐场景中的隐私安全问题 4. 部分联邦推荐相关的论文(非完整列表) 导语 说起联邦学习,大家再熟悉不过了,由于其能在数据不移动的前提下协同训练一个全局共享的模型,迅速成为了人工智能安全领域的一个研究热点。推荐系统作为人工智能领域最振奋人心的应用之一,与联邦学习相结合的研究也越发受到工业界和学术界的...
然而,在推荐系统无所不在的网络环境中,用户越来越强烈的意识到自己的数据是需要保密的。此外,从政府层面看,随着 GDPR 在欧洲的启动和美国类似法律的出台,越来越多的国家将效仿这一做法,进一步导致传统的推荐系统所依赖的训练数据越来越匮乏。在这样的背景下,能够实现隐私保护的推荐系统的研究与发展越来越重要。从另外...
说起联邦学习,大家再熟悉不过了,由于其能在数据不移动的前提下协同训练一个全局共享的模型,迅速成为了人工智能安全领域的一个研究热点。推荐系统作为人工智能领域最振奋人心的应用之一,与联邦学习相结合的研究也越发受到工业界和学术界的关注。 最近,中国科学:信息科学 杂志最新综述《基于联邦学习的推荐系统》(以下简称...
图神经网络(Graph Neural Network,GNN)是近年来出现的一种利用深度学习直接对图结构数据进行学习的框架。通过在图中的节点和边上制定一定的策略,图神经网络将图结构数据转化为规范而标准的表示,并输入到多种不同的神经网络中进行训练,在推荐系统任务上取得优良的效果。
图神经网络(Graph Neural Network,GNN)是近年来出现的一种利用深度学习直接对图结构数据进行学习的框架。通过在图中的节点和边上制定一定的策略,图神经网络将图结构数据转化为规范而标准的表示,并输入到多种不同的神经网络中进行训练,在推荐系统任务上取...
然而,在推荐系统中,仍然有许多尚未解决的问题,冷启动和用户数据隐私是其中的两个主要问题。 用联邦学习同时解决这两个问题是可行的。假设我们正通过联邦学习,用多方数据来训练一个全局模型。 对于冷启动问题,我们可以从其他参与方借鉴相关信息和知识,以帮助对新商品进行评分或对新用户进行预测。
比较经典的联邦推荐系统是19年华为提出的FCF,它是第一个基于联邦学习范式的隐式反馈协同过滤框架。 通过在本地利用个人数据更新自己的用户隐向量,以及计算本地的物品隐向量梯度并上传到中心服务器,其中表示第个客户端。最后客户端聚合物品隐向量实现整体物品隐矩阵的更新。