基于 transformer 的编码器-解码器模型的关键创新在于: 残差注意力模块无需使用循环结构即可处理长度 n 可变的输入序列 X1:n。不依赖循环结构使得基于 transformer 的编码器-解码器可以高度并行化,这使得模型在现代硬件上的计算效率比基于 RNN 的编码器-解码器模型高出几个数量级。回忆一下,要解决 序列到序列 问题...
与基于 RNN 的编码器-解码器模型类似,基于 transformer 的编码器-解码器模型由一个编码器和一个解码器组成,且其编码器和解码器均由残差注意力模块 (residual attention blocks)堆叠而成。基于 transformer 的编码器-解码器模型的关键创新在于: 残差注意力模块无需使用循环结构即可处理长度n可变的输入序列X1:n。不依...
这样的一种code-content不对称性说明了编码(encoding)和解码(decoding)的区别(见上图)。就像前两章介绍的那样,encoding指的是用内部或者环境的变量来预测神经活动,而decoding指的是从神经活动中预测这些变量(在许多文献中也会成为多变量模式分析MVPA)。例如,fMRI中最常用的encoding方法就是用一般线性模型(GLM)模型来评...
解码器 -阐述模型的解码器部分。 每个部分都建立在前一部分的基础上,但也可以单独阅读。这篇分享是第三部分编码器。 编码器 如前一节所述,基于 transformer的编码器将输入序列映射到上下文相关的编码序列: fθenc:X1:n→X―1:n 仔细观察架构,基于 transformer 的编码器由许多残差注意力模块堆叠而成。每个编码器...
通过LLM进化树(github.com/Mooler0410/LLMsPracticalGuide)来看,这些语言模型主要分为三类:一是“仅编码器”,该类语言模型擅长文本理解,因为它们允许信息在文本的两个方向上流动;二是“仅解码器”,该类语言模型擅长文本生成,因为信息只能从文本的左侧向右侧流动,并以自回归方式有效生成新词汇;三“编码器-...
编码器-解码器 2017 年,Vaswani 等人引入了 transformer 架构,从而催生了 基于 transformer 的编码器-解码器模型。 与基于 RNN 的编码器-解码器模型类似,基于 transformer 的编码器-解码器模型由一个编码器和一个解码器组成,且其编码器和解码器均由 残差注意力模块 (residual attention blocks) 堆叠而成。基于 tra...
编码器-解码器模型是一种深度学习架构,用于处理序列到序列的学习问题,如机器翻译、文本摘要和对话生成等。该模型由两个主要的组件组成:编码器和解码器。编码器负责将输入序列转化为固定维度的向量表示,而解码器则根据这个向量表示生成输出序列。
Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。如图1所示,这种结构能够处理序列到序列(Seq2Seq)的任务,如机器翻译、文本摘要、对话系统、声音转化等。
1 编解码与表示学习 什么是自编码器(autoencoder,encoder-decoder model)?通俗地说,用拍摄设备,录制视频,录制成了mp4文件,就是采集并且encode;你的手机视频播放器播放这个视频,就是decode视频并且播放。做encode-decode的模型,就是编码-解码模型。很明显,编码模型和解码模型是两个模型,但是,他们是配对使用的。你不能...
基于transformer 的编码器-解码器模型是 表征学习 和 模型架构 这两个领域多年研究成果的结晶。本文简要介绍了神经编码器-解码器模型的历史,更多背景知识,建议读者阅读由 Sebastion Ruder 撰写的这篇精彩 博文。此外,建议读者对 自注意力 (self-attention) 架构 有一个基本了解,可以阅读 Jay Alammar 的 这篇博文 ...