如图,直线y=- x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是 . 【答案】 分析: 根据旋转的性质--旋转不改变图形的形状和大小解答. 解答: 解:直线y=- x+4与x轴、y轴分别交于A(3,0)、B(0
如图,矩形ABOC的顶点O在坐标原点,顶点B,C分别在x,y轴的正半轴上,顶点A在反比例函数y= k x (k为常数,k>0,x>0)的图象上,将矩形ABOC绕点A按逆时针反向旋转90°
如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△
如图,在xOy直角坐标系中,△ABC的顶点为A(-3,-2)、B(-5,3)、C(0,4) (1)以y轴为对称轴,画出△ABC的对称图形△A1B1C1;(2)以A1为旋转中心,将△A1B1C1绕A1顺时针旋转90°,画出旋
如图,在平面直角坐标系xOy中,A(0,4),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过B作x轴的垂线、过点A作y轴的垂线,两直线相交
速议点列包劳联府法消存速议点列包劳联府法消存(xxxx年四川巴中)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90deg;后得到△AOp
所以旋转角度θ为15°.点评: 题考查了一元二次方程ax 2 +bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b 2 -4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了反比例函数的性质和一些几何图形的性质. ...
(1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标; (2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y= 的图象上,求a的值; (3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90). ①当α=30°时点B恰好落在反比例函数y= 的图象上,求...
如图,正比例函数y=kx(k≠0)的图象经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为___.
如图,在平面直角坐标系中,抛物线y=-x2+mx(m>0且m≠1)与x轴交于原点O和点A,点B的坐标为(1,-1),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连结OB、OC. (1)求点A的横坐标