本文提出了组归一化(Group Normalization,GN)作为批归一化(BN)的替代。作者发现很多经典的特征例如 SIFT[38] 和 HOG[9] 是分组的特征并涉及分组的归一化。例如,一个 HOG 向量是多个空间单元的输出,其中每个单元由一个归一化的方向直方图表征。类似地作者提出了 GN 作为层将通道分组并在每个组中将特征归一化...
在该论文中,我们提出了一种简单的组归一化的方法。GN 将信号通道分成一个个组别,并在每个组别内计算归一化的均值和方差,以进行归一化处理。GN 的计算与批量大小无关,而且在批次大小大幅变化时,精度依然稳定。例如在 ImageNet 上训练的 ResNet-50 ,当批次大小为 2 时,GN 的误差比 BN 低 10.6 %;当使用典型...
GroupNorm:将channel方向分group,然后每个group内做归一化,算(C//G)*H*W的均值 LN 和 IN 在视觉识别上的成功率都是很有限的,对于训练序列模型(RNN/LSTM)或生成模型(GAN)很有效。 所以,在视觉领域,BN用的比较多,GN就是为了改善BN的不足而来的。 GN 把通道分为组,并计算每一组之内的均值和方差,以进行归...
近日,FAIR 研究工程师吴育昕、研究科学家何恺明提出了组归一化(Group Normalization)方法,试图以小批尺寸实现快速神经网络训练,这种方法对于硬件的需求大大降低,并在实验中超过了传统的批归一化方法。 批归一化(Batch Norm/BN)是深度学习中非常有效的一个技术,极大地推进了计算机视觉以及之外领域的前沿。BN 通过计算一...
本文提出了组归一化(Group Normalization,GN)作为批归一化(BN)的替代。作者发现很多经典的特征例如 SIFT[38] 和 HOG[9] 是分组的特征并涉及分组的归一化。例如,一个 HOG 向量是多个空间单元的输出,其中每个单元由一个归一化的方向直方图表征。类似地作者提出了 GN 作为层将通道分组并在每个组中将特征归一化(见图...
GN是BN的改进版本,它将channel分成多个组,计算每一组的均值和方差做归一化处理,使归一化操作与batch_size大小无关,它在ResNet-50上batch_size为2的情况下错误率比BN降低了10.6%(详见上图)。在batch_size正常的情况下,也能保证模型效果正常。GN可以在大部分场景中替代BN,并且已在ImageNet, COCO, Kinetics等多...
近日,FAIR 研究工程师吴育昕、研究科学家何恺明提出了组归一化(Group Normalization)方法,试图以小批尺寸实现快速神经网络训练,这种方法对于硬件的需求大大降低,并在实验中超过了传统的批归一化方法。 批归一化(Batch Norm/BN)是深度学习中非常有效的一个技术,极大地推进了计算机视觉以及之外领域的前沿。BN 通过计算一...
今天,我们就来聊聊组归一化层和批量归一化层,这两位“老兄弟”,它们在神经网络中扮演的角色可不小哦!首先,咱们得搞清楚这两者的基本概念。简单来说,批量归一化就是在每个小批次的训练数据上进行归一化,它能让模型训练得更快、效果更好,简直是加速器!想象一下,开车的时候,你突然换到一条平坦的高速公路,是不是...
近日,FAIR 研究工程师吴育昕、研究科学家何恺明提出了组归一化(Group Normalization)方法,试图以小批尺寸实现快速神经网络训练,这种方法对于硬件的需求大大降低,并在实验中超过了传统的批归一化方法。 批归一化(Batch Norm/BN)是深度学习中非常有效的一个技术,极大地推进了计算机视觉以及之外领域的前沿。BN 通过计算一...
【AI科技大本营按】近日,FAIR 团队的吴育昕和何恺明提出了组归一化(Group Normalization,简称 GN)的方法。其中,GN 将信号通道分成一个个组别,并在每个组别内计算归一化的均值和方差,以进行归一化处理。此外,GN 的计算与批量大小无关,而且在批次大小大幅变化时,精度依然稳定。实验结果证明,GN 在多个任务中的表现均优...