二、岭回归和Lasso回归/** 下面的岭回归函数只是在一般的线性回归函数的基础上在对角线上引入了岭的概念,不仅有解决矩阵不可逆的线性,同样也有正则项的目的, 采用常用的二范数就得到了直接引入lam的形式。 **/ int ridgeRegres(Matrix x,Matrix y,double lam) { Matrix xT=x.transposeMatrix(); Matrix xTx=...
本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso回归,最后考虑到线性回归的局限性,介绍了一种局部加权线性回归,增加其非线性表示能力。作者 | 文杰 线...
本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso回归,最后考虑到线性回归的局限性,介绍了一种局部加权线性回归,增加其非线性表示能力 作者| 文杰 编辑| yuqu...
LASSO回归,又称L1正则化,是另一种处理多重共线性问题的线性回归方法。与岭回归不同,LASSO回归在损失函数中添加的正则化项是回归系数的绝对值之和,其数学表达式如下: 与岭回归相比,LASSO回归有以下特点: LASSO回归具有特征选择的能力,它可以将某些回归系数缩减至零,从而自动选择重要的特征。 可以用于稀疏数据集的建模。
线性回归的拟合函数(或 hypothesis)为: cost function (mse) 为: Lasso回归和岭回归 Lasso 回归和岭回归(ridge regression)都是在标准线性回归的基础上修改 cost function,即修改式(2),其它地方不变。 Lasso 的全称为 least absolute shrinkage and selection operator,又译最小绝对值收敛和选择算子、套索算法。
机器学习中的回归分析是一种预测建模任务,它涉及根据一个或多个自变量来预测一个连续的因变量。岭回归(Ridge Regression)、LASSO回归(Least Absolute Shrinkage and Selection Operator)和弹性网络(Elastic Net)都是线性回归模型的变种,属于广义线性模型。它们在处...
线性回归核心思想最小化平方误差,可以从最小化损失函数和最小二乘角度来看,也有概率解释。优化过程可以采用梯度方法和闭式解。在闭式解问题中需要注意矩阵可逆问题。考虑到过拟合和欠拟合问题,有岭回归和lasso回归来防止过拟合,局部加权线性回归通过加权实现非线性表示。
线性回归,岭回归,Lasso回归,弹性网 一、线性回归: 最小二乘解的计算依据是要保证训练数据们的残差平方和最小(这个高中就学过),据此可得到线性回归的最小二乘解 首先需要判断线性回归模型是否存在过拟合的现象。如果样本数量足够多,那么参数越多,模型越好,并且不会发生过拟合。但实际情况是样本数有限,在这种情况下...
本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso回归,最后考虑到线性回归的局限性,介绍了一种局部加权线性回归,增加其非线性表示能力。
考虑到过拟合和欠拟合问题,有岭回归和 lasso回归来防止过拟合,局 部加权线性回归通过加权实现非线性表示。代码实战A、线性回归/*线性回归函数的实现,考虑一般的线性回归,最小平方和作为损 9、失函数,则目标函数是一个无约束的凸二次规划问题,由凸二次规划问题的极小值在导数为0处取到,且极小值为全局最小值,...