1、磁盘读写代价更低 一般来说B+Tree比BTree更适合实现外存的索引结构,因为存储引擎的设计专家巧妙的利用了外存(磁盘)的存储结构,即磁盘的最小存储单位是扇区(sector),而操作系统的块(block)通常是整数倍的sector,操作系统以页(page)为单位管理内存,一页(page)通常默认为4K,数据库的页通常设置为操作系统页的整数...
数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。
聚簇索引将索引和数据行保存在同一个B-Tree中,查询通过聚簇索引可以直接获取数据,相比非聚簇索引需要第二次查询(非覆盖索引的情况下)效率要高。 聚簇索引对于范围查询的效率很高,因为其数据是按照大小 数据库中聚簇索引与非聚簇索引的区别 顺序,而对非聚簇索引的解释是:索引顺序与数据物理排列顺序无关。正式...
B+Tree索引 B+树是B-树的改进版本,数据都在叶子节点上,并且增加了顺序访问指针,每个叶子节点都指向相邻的叶子节点的地址。 相比B-Tree来说,进行范围查询时只需要查找较小的那个节点,然后顺着节点直接遍历即可 而B-Tree需要获取所有节点,相比之下B+Tree效率更高 区别与联系 二者区别 从上面来看,B+树索引和Hash索...
普通索引 btree和hash 索引方法btree与hash的区别,Hash索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以Hash索引的查询效率要远高于B-Tree索引。可能很多人又有疑问了,既然
Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。 对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。