这种方法结合了统计模型、迭代优化算法,可以更准确地估计锂电池的寿命。EM算法用于参数估计,粒子滤波算法用于状态估计,伽马模型用于描述锂电池的寿命分布。 在这种方法中,EM算法被用来迭代地估计伽马模型的参数,以最大化似然函数。粒子滤波算法则估计锂电池的状态,并结合伽马模型的参数,可以更好地预测锂电池的寿命。 完...
S和粒子数M等模型参数对预测结果的影响规律,继而构建实时更新提议分布、MCMC方法与粒子滤波算法优化融合的状态跟踪与剩余使用寿命预测模型——基于MCMC的更新改进粒子滤波融合算法模型。仿真实验结果表明,该文提出的改进算法具有状态跟踪拟合度好、预测精度高及计算效率性能优良等特点,并通过设计出不同类型电池容量和算法模型...
batteries.%运用粒子滤波算法,进行了锂离子电池剩余寿命(RUL)的预测,提出了一种基于模型法和数据驱动法相融合的简单有效的RUL预测方法.该方法通过模型法和数据驱动法的融合,将双指数经验退化模型进行变形,以减少模型参数,降低参数训练难度,利用粒子滤波算法跟踪电池容量衰退的过程;为提高预测精确度,引入自回归(AR)时间...
运用粒子滤波算法,进行了锂离子电池剩余寿命(RUL)的预测,提出了一种基于模型法和数据驱动法相融合的简单有效的RUL预测方法.该方法通过模型法和数据驱动法的融合,将双指数经验退化模型进行变形,以减少模型参数,降低参数训练难度,利用粒子滤波算法跟踪电池容量衰退的过程;为提高预测精确度,引入自回归(AR)时间序列模型修正...