问答题:请简述K-means聚类算法的基本原理和步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法是一种基于划分的聚类算法,通过迭代将数据划分为K个簇。它的基本原理是通过计算每个数据点到簇中心的距离来确定每个数据点的簇,并不断迭代更新簇中心和簇分配,直到满足收敛条件为止。
相关知识点: 语言基础及运用 常识 文学常识题 试题来源: 解析 答案:K-means聚类算法是一种常用的无监督学习算法,其原理是将数据点根据特征相似性进行分组,每个组为一个簇,簇内数据点与簇内均值的距离最小化,而不同簇之间的距离最大化。应用场景包括市场细分、图像分割、文档归类等。反馈 收藏 ...
简述K-means聚类分析的基本步骤?相关知识点: 试题来源: 解析 解第1步:确定要分的类别数目K需要研究者自己确定在实际应用中.往往需要研究者根据实际问题反复尝试.得到不同的分类并进行比较.得出最后要分的类别数量。第2步:确定K个类别的初始聚类中心要求在用于聚类的全部样本中.选择K个样本作为K个类别的初始聚类...
解析 答案:K-means聚类算法的基本步骤如下: (1)随机选择K个数据点作为初始聚类中心。 (2)计算每个数据点到各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的类别。 (3)更新聚类中心:计算每个类别内所有数据点的均值,作为新的聚类中心。 (4)重复步骤2和3,直到聚类中心不再发生变化。
问答题:请简述K-means聚类算法的基本步骤。相关知识点: 试题来源: 解析 答案:K-means聚类算法的基本步骤包括:随机选择K个中心点,将每个数据点分配给最近的中心点,形成K个簇;计算每个簇的中心点;重复以上步骤,直到中心点不再变化或达到预设的迭代次数。
01 K-Means聚类算法原理 K-Means算法是一种典型的基于划分的聚类算法,也是一种无监督学习算法。K-Means算法的思想很简单,对给定的样本集,用欧氏距离作为衡量数据对象间相似度的指标,相似度与数据对象间的距离成反比,相似度越大,距离越小。 预先指定初始聚类数以及个初始聚类中心,按照样本之间的距离大小,把样本集划...
K-means算法是一种常用的聚类方法,它将数据集分为K个不同的簇,使得簇内的数据点相似度较高,而簇间的数据点相似度较低。下面将介绍K-means算法的基本流程以及相关参考内容。 1.确定K值:首先需要确定要将数据集划分成多少个簇。一般情况下,可以通过经验或者其他领域知识来确定K值。 2.初始化:从数据集中随机选择...
K-means算法是一种常用的聚类算法,其原理如下:初始化:随机选择k个初始质心,每个质心表示一个簇的中心点。分配:对于每个数据点,计算其到k个质心的距离,将其分配给距离最近的质心所表示的簇。重新计算质心:对于每个簇,重新计算其所有点的均值,得到新的质心位置。重复2和3步,直到质心位置不再...
一、有监督学习方法举例 1. 朴素贝叶斯分类 二、无监督学习方法举例 2. K-means 三、 参考资料 一、有监督学习方法举例 1. 朴素贝叶斯分类 朴素贝叶斯分类是一种十分简单的分类算法,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类...