KNN分类算法是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类...
Logistic回归通过使用权重来降低异常值的权重。 k-means算法和knn算法的区别? K-means聚类算法是HCM(普通的硬c-means聚类算法),这是一种硬划分方法,结果不是1就是0,没有其他情况,具有“非此即彼”的性质。 隶属度矩阵为u。FCM是HCM算法对模糊情况的推广,用于模糊分类,并给出隶属度的权重。