反向传播算法需要用到各个神经元传输函数的梯度信息,当神经元的输入太大时(大于1比如),相应的该点自变量梯度值就过小,就无法顺利实现权值和阈值的调整)。传输函数比如logsig或tansig,你可以把函数图像画出来,会发现,[-1,1]之间函数图像比较徒,一阶导数(梯度)比较大,如果在这个敬意范围之外,图像就比较平坦,一阶...
因为神经元的传输函数在[0,1]之间区别比较大,如果大于1以后,传输函数值变化不大(导数或斜率就比较小),不利于反向传播算法的执行。反向传播算法需要用到各个神经元传输函数的梯度信息,当神经元的输入太大时(大于1比如),相应的该点自变量梯度值就过小,就无法顺利实现权值和阈值的调整)。传输函数...
神经网络|四种激活函数 | 分享一下在神经网络设计中常用的四种激活函数 : Sigmoid、Tanh、ReLU和Softmax。 Sigmoid函数是一种常用的非线性函数,可以将任何实数映射到0到1之间。它通常用于将不归一化的预测值转换为概率分布。 Tanh函数是Sigmoid函数的双曲版本,它将任何实数映射到-1到1之间。