介绍深度学习就必须要介绍神经网络,因为深度学习是基于神经网络算法的,其实最开始只有神经网络算法,上文也提到2006年Geoffrey Hinton老爷子提出Deep Learning,核心还是人工神经网络算法,换了一个新的叫法,最基本的算法没有变。学过生物的都知道神经网络是什么?下图是生物神经网络及神经元的基本组成部分。 人类的大脑可以实...
神经网络和深度学习是人工智能的两个重要分支,它们模仿了人类大脑的工作原理,通过大量的数据和计算来实现各种复杂的任务。神经网络是由许多简单的单元组成的结构,深度学习是利用多层神经网络来学习数据特征和规律的方法。深度学习有很多不同类型的神经网络,它们针对不同类型的数据和任务进行了优化和改进。
主要原因有两个方面:一是数据量越来越大,导致原有的算法处理大量数据问题较多;二是大型神经网络的构建,使得有更好的算法来快速处理问题。 但是,对于数据量不大的情况,深度学习未必会比普通的机器学习算法快,反而有可能诸如SVM等算法效果更好。 五、神经网络与RELU 对于机器学习,无论是logistic回归、SVM还是浅层神经...
4.突触:神经末梢与其他神经元的树突接触的区域(当然也可以与胞体直接接触) 5.神经网络:是指一种结构,指类似于神经元之间形成的一种网络状的结构。下图即为人工神经网络(Artificial Neural Networks,简写为ANNs) 6.人工智能、机器学习、神经网络、深度学习之间的关系 – 神经网络和深度学习都属于机器学习的一种 – ...
很多人常常混淆深度学习和机器学习这两个术语,其实它们之间有一些微妙的差别。简单来说,机器学习、深度学习和神经网络都是人工智能的一部分,但它们之间的关系可以这样理解:神经网络是机器学习的一个子领域,而深度学习则是神经网络的一个子领域。深度学习和机器学习的主要区别在于它们的学习方式。深度学习可以利用标注数据...
深度学习其实就是有更多隐层的神经网络,可以学习到更复杂的特征。得益于数据量的急剧增多和计算能力的提升,神经网络重新得到了人们的关注。 1. 符号说明 2. 激活函数 为什么神经网络需要激活函数呢?如果没有激活函数,可以推导出神经网络的输出y是关于输入x的线性组合,那么神经网络的隐层就没有任何意义,对于这样的模...
2.1 生物神经网络 介绍深度学习就必须要介绍神经网络,因为深度学习是基于神经网络算法的,其实最开始只有神经网络算法,上文也提到2006年Geoffrey Hinton老爷子提出Deep Learning,核心还是人工神经网络算法,换了一个新的叫法,最基本的算法没有变。学过生物的都知道神经网络是什么?下图是生物神经网络及神经元的基本组成部分。
一、深度学习概论 1.1 什么是神经网络 神经元代表了线性修正单元函数 1.2用神经网络进行深度学习 监督学习:已经有数据集,知道相应的输入产生怎样的输出,找出输入输出这种对应的关系 监督学习问题被分成回归和分类两类 CNN通常被用来处理图像;RNN通常被用来处理一维序列数据 ...
学习总结 1. 简介 神经网络和深度学习是由Michael Nielsen所写,其特色是:兼顾理论和实战,是一本供初学者深入理解Deep Learning的好书。 2. 感知器与sigmoid神经元 2.1 感知器(Perceptrons) 感知器工作原理:接收一系列二进制输入,经过特定的规则计算之后,输出一个简单的二进制。