人工智能的方法绝大多数基于纯数据驱动,也就是基于“连接主义”所形成的数据驱动的计算的模型及理论。实际上,知识嵌入学习是把基于符号计算的“符号主义”方法和基于数据计算的“连接主义”方法融合,形成了知识嵌入学习。此外,该研究还讨论了一种方法,可从数据中提取目标控制方程或物理定律,进而实现新知识与新定律...
周志华谈人工智能的未来:机器学习和逻辑推理、数据和知识双驱动 #周志华 #人工智能 #AI #大模型 #院士 - 创新指南针于20230905发布在抖音,已经收获了7.9万个喜欢,来抖音,记录美好生活!
智谱AI是由清华大学计算机系技术成果转化而来的公司,致力于打造新一代认知智能通用模型。公司合作研发了双语千亿级超大规模预训练模型GLM-130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎,基于此模型打造了ChatGLM(chatglm.cn)。此外,智谱AI还推出了认知大模型平台Bigmodel.ai,包括CodeGeeX和CogView...
如今,数据驱动方法尚且存在许多的不足,仅以能源行业为例,行业面临着对模型的鲁棒性和解释性要求高、数据采集费时且成本高昂等问题,只有构建知识与数据的双驱动模型——既有人工智能技术,也有相关领域知识,还有观测数据,相互的融合才能实现一个智慧能源系统(图7),提升模型精度和鲁棒性,降低对数据的需求。而智慧能源系...
人工智能的方法绝大多数基于纯数据驱动,也就是基于“连接主义”所形成的数据驱动的计算的模型及理论。 实际上,知识嵌入学习是把基于符号计算的“符号主义”方法和基于数据计算的“连接主义”方法融合,形成了知识嵌入学习。此外,该研究还讨论了一种方法,可从数据中提取目标控制方程或物理定律,进而实现新知识与新定律的...
为解决这些问题,孙浩与团队提出运用先验物理知识对人工智能模型约束或编码,发展数据和知识双驱动智能计算模型,增强了深度学习的外推和泛化性能[1]。他们成功解决了在小训练样本下复杂动态系统建模、非线性偏微分方程正反问题高效求解、数据驱动仿真等关键性难题。