VQ问题可以这样描述:给定一个已知统计属性的矢量源(也就是训练样本集,每一个样本是一个矢量)和一个失真测度。还给定了码矢的数量(也就是我们要把这个矢量空间划分为多少部分,或者说量化为多少种值),然后寻找一个具有最小平均失真度(数据压缩,肯定是失真越小越好)的码书(所有码矢的集合,也就是上面的那些所有红色星星点)和空间的划分(图中所有蓝色线的
典型的有:动态时间规整DTW,矢量量化VQ等。 DTW利用动态规划的思想,但也有不足:1)过分依赖VAD技术;2)没有充分利用语音的时序动态特性,所以被HMM取代也就容易理解了。 VQ算法是数据压缩的方法。码本简历、码字搜索是两个基本问题,码本简历是从大量信号样本中训练出比较好的码书,码字搜索是找到一个和输入最匹配的...
根据结果,我们观察到加法 VQ 在两个指标上都比残差 VQ 和产品 VQ 获得更高的均值和更低的方差。 在语音编码场景中,对于 16 位 VQ(具有 4 个码本,即 M=4),在总比特率为 8、9.6、13.2、16.4、24.4 和 32 kbit/s 时,所提出的 VQ 方法在 PESQ 和 pSNR 指标方面的性能;实线表示 PESQ 和 pSNR 的平均...
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。 后验和先验分布 证据下界(ELBO) 在机器学习模型中,大多数后验分布都相当复杂。我们使用变分推理这一基于优化的方法来近似这些分布。ELBO 是变分推理中一个...
2)基于VQ的说话人识别(SR,speaker recognition)技术 〇、分类问题 说话人识别其实也是一个分类问题: 说话人识别技术,主要有这几大类方法: 模板匹配方法 这类方法比较成熟,主要原理:特征提取、模板训练、匹配。典型的有:动态时间规整DTW,矢量量化VQ等。
在VQ-VAE中,通过矢量量化步骤避免了后验崩溃。 矢量量化变分自编码器(VQ-VAE) 离散表示可以有效地用来提高机器学习模型的性能。人类语言本质上是离散的,使用符号表示。我们可以使用语言来解释图像。因此在机器学习中使用潜在空间的离散表示是一个自然的选择。 首先,编码器生成嵌入。然后从码本中为给定嵌入选择最佳近似...
矢量量化(VQ)是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。 矢量量化使用以下公式将输入矢量 x 映射到码本 (CB) 内的最接近码字: 其中c指码本 1、PQ算法 首先介绍Product Quantization(PQ)算法,它的思想很简单,假设向量的维度为D,聚类中心个数为K,如果使用Kmeans算法,那么存储的复杂度为 D...
在VQ-VAE中,通过矢量量化步骤避免了后验崩溃。 矢量量化变分自编码器(VQ-VAE) 离散表示可以有效地用来提高机器学习模型的性能。人类语言本质上是离散的,使用符号表示。我们可以使用语言来解释图像。因此在机器学习中使用潜在空间的离散表示是一个...
矢量量化VQ 矢量量化(vector quantizization)技术技术是一种数据压缩和编码技术,矢量量化压缩技术的应用领域非常广阔,如军事部门和气象部门的卫星(或航天飞机)遥感照片的压缩编码和实时传输、雷达图像和军用地图的存储与传输、数字电视和DVD的视频压缩、医学图像的压缩与存储、网络化测试数据的压缩和传输、语音编码、图像...
如果初始化时(笔者写的 VQ-VAE 正好是这样),那么旋转技巧加持下重构损失的梯度就会比 STE 加持下重构损失的梯度小很多,于是对于编码器来说这一项的梯度占了主导。 换句话说,初始阶段相当于只在优化,这会导致,即编码表坍缩,这就能解释编码表损失降低、重构损失增加的现象了。