1、匹配不同:V1中每个顶点至少关联t(t>0)条边,V2中每个顶点至多关联t条边,则G中存在V1到V2的完备匹配。2、条件不同:Hall定理中的条件为相异性条件,满足t条件的二部图,一定满足相异性条件,事实上V1中k个顶点至少关联 kt条边,这 kt条边至少关联V2中的k个顶点,于是若G满足t条件,则G一定满足相异性条件,但
1、匹配不同:V1中每个顶点至少关联t(t>0)条边,V2中每个顶点至多关联t条边,则G中存在V1到V2的完备匹配。2、条件不同:Hall定理中的条件为相异性条件,满足t条件的二部图,一定满足相异性条件,事实上V1中k个顶点至少关联 kt条边,这 kt条边至少关联V2中的k个顶点,于是若G满足t条件,则...
条件.有完备匹配,并且是完美 匹配.图(b)不满足相异性条件, u_1 , u_2 , u_4 只与v1,v1关联.反过来,2,3只与u3关联.当 然也不满足t条件.不存在完备匹配.图(c)满足t(t=2)条件,当然也满足相异性条件.有 完备匹配,但不是完美匹配. 分析 满足相异性条件是存在完备匹配的充分必要条件,而满足!条件是...
百度试题 结果1 题目4.举例说明:满足“相异性条件”的二部图不一定存在一个t≥1使其满足 “t条件” 相关知识点: 试题来源: 解析 答案· 反馈 收藏