目标检测(Object Detection),也叫目标提取,是一种基于目标几何和统计特征的图像分割。它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。 尤其是在复杂场景中,需要对多个目标进行实时处理时,目标自动提取和识别就显得特别重要。 1. 什么是目标检测 1.1 目标检测的定义: 识别图片或者视频中有...
这里特征提取网络即各种深度神经网络结构,针对这一算法的研究很多,比如说各层的设计细节(激活函数,损失函数,网络结构等)、可视化等,为了能提取更加强壮有效的特征,研究者考虑各种问题,如尺度不变性问题(通常用于解决小目标的检测,如特征金字塔网络,Feature Pyramid Network,FPN),整个网络其实是分作两类的,前N个层为第...
分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标...
理论部分上图展示的应用场景,比如人体技术、工业上的缺陷检测、医学图像的病灶检测、智能座舱以及自动驾驶等都离不开目标检测。 因此,目标检测在计算机视觉中属于非常基础性的技术。 1. 基础知识提到目标检测,…
目标检测,object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。 目标检测要解决的问题有两个:物体在哪里,物体是什么的整个流程问题。 目标检测问题的难点:物体的尺寸变化范围很大;摆放物体的角度,姿态不定;而且可以出现在图片的任何地方;物体还可以是...
1. 目标检测 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标,并确定它们的类别和位置...
目标检测:需要在识别出图片中目标类别的基础上,还要精确定位到目标的具体位置,并用外接矩形框标出。 分类和目标检测任务示意图 2. 目标检测常用思路 自2012年Alex Krizhevsky凭借Alex在ImageNet图像分类挑战赛中拿下冠军之后,深度学习在图像识别尤其是图像分类领域开始大放异彩,大...
5. 小结 本小节首先介绍了目标检测的问题背景,随后分析了一个实现目标检测的解决思路,这也是众多经典检测网络所采用的思路(即先确立众多候选框,再对候选框进行分类和微调)。最后介绍了bbox和IoU这两个目标检测相关的基本概念。
1.目标检测Overfeat模型 1.1滑动窗口 目标检测的暴利方法是从左到右,从上到下滑动窗口,利用分类识别目标。 为了在不同观察距离处检测不同的目标类型,我们使用不同大小和宽高比的窗口。如下所示: 注:这样就变成每张图片输出类别以及位置,变成分类问题。
图1:目标检测的坐标表示 目标检测的发展 早期,传统目标检测算法还没有使用深度学习,一般分为三个阶段:区域选取(找到物体的位置)、特征提取(描述物体的特征,特征类比苹果与西瓜的颜色与形状,苹果:小小的红色椭圆,西瓜:大大的绿色椭圆)、特征分类(看见小小的红色椭圆,知道是苹果;看见大大的绿色椭圆,知道是西瓜)。