(5)线性混合光谱分解的应用 1、基本概念 每个像元所对应的地表,往往包含着不同的覆盖成分,它们具有不同的光谱特征。而每个像元仅用一个信号记录这些“异质”成分,因此形成了混合光谱现象,对应的像元称为混合像元。 混合光谱现象的存在,是制约遥感影像分类精度提高的重要因素,因此需要从像元级进入亚像元级,才能提高遥感...
方法(1)一般从标准波谱库选择,方法(2)直接从图像上寻找端元可选择的方法有:从二维散点图中基于几何顶点的端元提取,借助纯净像元指数(Pixel Purity Index——PPI)和n维可视化工具用于端元波谱收集,基于连续最大角凸锥(Sequential Maximum Angle Convex Cone——简称SMACC)的端元自动提取。下面介绍几种端元选择的...
Linear Spectral Unmixing可以根据物质的波谱特征,获取多光谱或高光谱图像中物质的丰度信息,即混合像元分解过程。假设图像中每个像元的反射率为像元中每种物质的反射率或者端元波谱的线性组合。例如:像元中的25%为物质A,25%为物质B,50%为物质C,则该像元的波谱就是三种物质波谱的一个加权平均值,等于0.25A+0.25B+0.5...
光谱图像的混合像元分解有两个基本目的:确定组成混合像元的基本地物和计算各个基本地物在混合像元中所占比例。前者称为端元提取(endmember extraction),后者称为丰度反演(abundance inversion)。这两者是实现混合像元分解的核心步骤。为了实现混合像元分解,需要利用数学模型描述混合像元形成的物理过程。根据对物理过程抽象...
光谱图像的混合像元分解有两个基本目的:确定组成混合像元的基本地物和计算各个基本地物在混合像元中所占比例。前者称为端元提取(endmember extraction),后者称为丰度反演(abundance inversion)。这两者是实现混合像元分解的核心步骤。为了实现混合像元分解,需要利用数学模型描述混合像元形成的物理过程。根据对物理过程抽象程度...
混合像元分解 混合像元分解(MixedPixelDecomposition,MPD)是一种不需要任何理论假设的半监督算法,用于自动地从复杂的观测图像中分解出多个不同的像元组。MPD是计算机视觉和图像处理领域的一个关键技术,它支持多种现代视觉任务,包括目标检测、跟踪、语义分割、深度学习等。 MPD技术应用于图像处理,首先要建立一个模型,该...
l混合像元分解 混合像元分解技术假设:在一个给定的地理场景里,地表由少数的几种地物(端元)组成,并且这些地物具有相对稳定的光谱特征,因此,遥感图像的像元反射率可以表示为端元的光谱特征和这个像元面积比例(丰度)的函数。这个函数就是混合像元分解模型。近年来,研究人员提出了许多有效的分解模型,主要有:线性...
光谱图像的混合像元分解有两个基本目的:确定组成混合像元的基本地物和计算各个基本地物在混合像元中所占比例。前者称为端元提取(endmember extraction),后者称为丰度反演(abundance inversion)。这两者是实现混合像元分解的核心步骤。为了实现混合像元分解,需要利用数学模型描述混合像元形成的物理过程。根据对物理过程抽象程度...