《深度强化学习原理与实践》是2019年7月人民邮电出版社出版的图书,作者是陈仲铭、何明。内容简介 本书构建了一个完整的深度强化学习理论和实践体系:从马尔可夫决策过程开始,根据价值函数、策略函数求解贝尔曼方程,到利用深度学习模拟价值网络和策略网络。书中详细介绍了深度强化学习相关算法,如Rainbow、Ape-X算法等,并...
深度强化学习原理与实践 陈喆著 京东价 ¥降价通知 累计评价 0 促销 展开促销 配送至 --请选择-- 支持 更多商品信息 商品介绍 规格与包装 售后保障 商品评价 本店好评商品 出版社:清华大学出版社 ISBN:9787302660705 版次:1 商品编码:14595350 品牌:其他品牌 ...
不同于侧重代码实现和应用的书籍,本书期望能够让非计算机和数理相关专业的学生也可以从算法原理入门,将开源社区中优秀的深度强化学习算法代码库,结合自身领域内的特殊问题,构建自己的深度强化学习模型,解决一些棘手的经典或领域内传统算法不能解决的问题。在原理学习和编程实践的过程中,本书也提供了开源的示例代码,不...
深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识...
本书从原理的角度,力求讲解清楚深度学习、强化学习、深度强化学习中的一些精选方法,并从实践的角度,通过一系列循序渐进的原创实验,引领读者独立编程实现这些方法,以期为读者精通深度强化学习并应用深度强化学习方法解决实际问题奠定坚实基础。本书不仅适合计算机科学与技术、人工智能、物联网工程、数据科学与大数据、软件工程...
本书构建了一个完整的深度强化学习理论和实践体系:从马尔可夫决策过程开始,根据价值函数、策略函数求解贝尔曼方程,到利用深度学习模拟价值网络和策略网络。书中详细介绍了深度强化学习相关算法,如Rainbow、Ape-X算法等,并阐述了相关算法的具体实现方式和代表性应用(如AlphaGo)。此外,本书还深度剖析了强化学习各算法之间的...
本书构建了一个完整的深度强化学习理论和实践体系:从马尔可夫决策过程开始,根据价值函数、策略函数求解贝尔曼方程,到利用深度学习模拟价值网络和策略网络。书中详细介绍了深度强化学习相关算法,如Rainbow、Ape-X算法等,并阐述了相关算法的具体实现方式和代表性应用(如AlphaGo)。此外,本书还深度剖析了强化学习各算法之间的...
当当网图书频道在线销售正版《深度强化学习原理与实践》,作者:陈仲铭 何明,出版社:人民邮电出版社。最新《深度强化学习原理与实践》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《深度强化学习原理与实践》,就上当当网。
划线价:商品展示的划横线价格为参考价,并非原价,该价格可能是品牌专柜标价、商品吊牌价或由品牌供应商提供的正品零售价(如厂商指导价、建议零售价等)或其他真实有依据的价格;由于地区、时间的差异性和市场行情波动,品牌专柜标价、商品吊牌价等可能会与您购物时展示的不一致,该价格仅供您参考。