Cifar10数据集Cifar10是一个由彩色图像组成的分类的数据集(MNIST是黑白数据集),其中包含了飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车10个类别(如图3所示),且每个类中包含了1000张图片。整个数据集中包含了60000张32×32的彩色图片。该数据集被分成50000和10000两部分,50000是training set,用来做训练...
在CIFAR10图像分类任务中,常用的优化器包括随机梯度下降(SGD)、Adam、RMSprop等。 数据增强(Data Augmentation):数据增强是一种用于扩展数据集的技术,通过应用各种随机变换来生成新的训练样本。在CIFAR10图像分类任务中,常用的数据增强技术包括旋转、裁剪、平移、缩放等。研究现状目前,CIFAR10图像分类任务已经吸引了大量研...
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py 数据集简介 CIFAR10数据集总共包含10个类别,每张图片为3通道的RGB图片,大小为32x32像素。 数据集下载与预处理 使用torchvision.datasets可以下载经典数据集,设置下载路径root和download=True,电脑会自动...
今日,一位名为 David Page 的 myrtle.ai 科学家和他的团队对 ResNet 训练进行了一系列改造,将在单 GPU 上训练 CIFAR10 数据集并达到 94% 准确率所需的时间减少到了 26 秒,比 DAWNBench 排行榜现在的第一名高了 10 秒以上。这一项目获得了 Jeff Dean 的点赞。 myrtle.ai 研究科学家 David Page 的推特...
数据:PyTorch 自带的 CIFAR-10 图片数据集 代码+注释如下。 第一步,下载数据,抽取 10%的样本 # 导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvisionimporttorchvision.transformsastransformsfromtorch.utils.dataimportDataLoaderimportnumpyasnpimporttorch.nn.functionalasF# 设置一个随机种子...
数据集使用的数据集:CIFAR-10数据集大小:175M,共10个类、6万张32*32彩色图像训练集:146M,共5万张图像测试集:29M,共1万张图像下载的时候选择binary version环境:CPU windows因此script中是shell脚本是无法直接使用的训练过程修改用到的yaml文件,默认为default_config.yaml文件,训练cifar10数据集时,ds_type: cifar...
CIFAR10数据集是一个用于识别普适物体的小型数据集,一共包含10个类别的RGB彩色图片,图片尺寸大小为32x32,如图: CIFAR10.png 相较于MNIST数据集,MNIST数据集是28x28的单通道灰度图,而CIFAR10数据集是32x32的RGB三通道彩色图,CIFAR10数据集更接近于真实世界的图片。
PyTorch实战之Cifar10分类 1.数据准备 我们在前面已经介绍过Cifar10数据集,它是一个常用的彩色图片数据集,它是由10个类别组成的,分别是airplane、automobile、bird、cat、deer、dog、frog、horse、ship和truck,其中,每一张照片都是3*32*32,即3通道彩色图片,分辨率为32*32。
1.数据集介绍 利用torchvision.datasets函数可以在线导入pytorch中的数据集,包含一些常见的数据集如MNIST、CIFAR-10等。本次使用的是CIFAR10数据集,也是一个很经典的图像分类数据集,由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集,一共包含 10 个类别的 RGB ...
由于原Alexnet网络的输入是3通道227*227图像,而Cifar-10数据集是3通道的32*32图像,如果直接输入3*32*32的图像到Alexnet网络,边缘需要填充大量0值才凑成227*227图像,这既麻烦又增加计算量。同时Cifar-10数据集只有10个种类,输出层的尺寸也需要修改。因此我们对Alexnet网络的输入层尺寸、中间层尺寸和输出层尺寸都稍...