1.1 RW度规简介 在大尺度上,宇宙是均匀且各向同性的。描述这种宇宙的度规为罗伯逊-沃克度规(RW度规)。 gμν=(−10000a(t)21−Kr20000r2a(t)20000r2a(t)2sin2(θ)) 设四个分量及对应编号分别为:t(0),r(1),θ(2),ϕ(3)。 00分量是时间,其他三个分量代表三维空间,这是一个三维球面的度规,...
1、宇宙膨胀尺度因子R(t)与时间有关时罗伯逊沃克度规没有常数曲率此结果对哈勃常数以及暗物质和暗能量密度的影响梅 晓春(福州大学物理系,福州原创物理研究所,中国)内容摘要 文中讨论罗伯特沃特度规曲率常数的真正含义,严格按黎曼几何公式计算了罗伯特沃特度规的曲率张量和时空曲率。证明当尺度因子常数或时,纯空间方向的...
可见我们根本不可能得到(8)和(10)式.在 R(t) 常数的情况下,我们并没有证明常数 是将罗 伯特--沃特度规的空间曲率.在下文中我们将证明,(12)式的空间曲率才是 ,(10)式的空间曲 率不可能是 .然而目前一般将罗伯特--沃特度规中 看成曲率常数, 0 时(2)式度规的空间部...
罗伯逊-沃克度规免费编辑添加义项名 B添加义项 ? 所属类别 : 词条暂无分类 满足宇宙学原理的四维时空度规。 中文名称:罗伯逊-沃克度规;英文名称:RobertsonWalkermetric; 词条信息 最近更新者:jinanjiaju 最近更新:2023-05-20 编辑次数:3 历史版本