spark底层对static batch data和streaming data有共同的rdd抽象,完美兼容互操作。而flink中DataSet 和 DataStream是完全独立的,不可以直接交互。 此外,flink还可以运行storm的topology,带来较强的移植性。另外一个有趣的功能是可以自由调整job latency and throughputs的取舍关系,比如需要high throughputs的程序可以牺牲laten...
spark底层对static batch data和streaming data有共同的rdd抽象,完美兼容互操作。而flink中DataSet 和 DataStream是完全独立的,不可以直接交互。 此外,flink还可以运行storm的topology,带来较强的移植性。另外一个有趣的功能是可以自由调整job latency and throughputs的取舍关系,比如需要high throughputs的程序可以牺牲laten...
Spark Streaming是Apache Spark之上支持流处理任务的子系统,看似是一个特例,其实并不是——Spark Streaming采用了一种micro-batch的架构,即把输入的数据流切分成细粒度的batch,并为每一个batch数据提交一个批处理的Spark任务,所以Spark Streaming本质上还是基于Spark批处理系统对流式数据进行处理,和Storm等完全流式的数据...
Stom 的架构是经典的主从模式,并且强依赖 ZooKeeper;Spark Streaming 的架构是基于 Spark 的,它的本质是微批处理,每个 batch 都依赖 Driver,我们可以把 Spark Streaming 理解为时间维度上的 Spark DAG。 Flink 也采用了经典的主从模式,DataFlow Graph 与 Storm 形成的拓扑 Topology 结构类似,Flink 程序启动后,会根据...
spark底层对static batch data和streaming data有共同的rdd抽象,完美兼容互操作。而flink中DataSet 和 DataStream是完全独立的,不可以直接交互。 此外,flink还可以运行storm的topology,带来较强的移植性。另外一个有趣的功能是可以自由调整job latency and throughputs的取舍关系,比如需要high throughputs的程序可以牺牲laten...
spark底层对static batch data和streaming data有共同的rdd抽象,完美兼容互操作。而flink中DataSet 和 DataStream是完全独立的,不可以直接交互。 此外,flink还可以运行storm的topology,带来较强的移植性。另外一个有趣的功能是可以自由调整job latency and throughputs的取舍关系,比如需要high throughputs的程序可以牺牲laten...
spark底层对static batch data和streaming data有共同的rdd抽象,完美兼容互操作。而flink中DataSet 和 DataStream是完全独立的,不可以直接交互。 此外,flink还可以运行storm的topology,带来较强的移植性。另外一个有趣的功能是可以自由调整job latency and throughputs的取舍关系,比如需要high throughputs的程序可以牺牲laten...
第⼆种则是基于Micro-batch,数据流被切分为⼀个⼀个⼩的批次,然后再逐个被引擎处理。这些batch⼀般是以时间为单位进⾏切分,单位⼀般是‘秒‘,其中的典型代表则是spark了,不论是⽼的spark DStream还是2.0以后推出的spark structured streaming都是这样的处理机制;另外⼀个基于Micro-batch实现的...
Stom 的架构是经典的主从模式,并且强依赖 ZooKeeper;Spark Streaming 的架构是基于 Spark 的,它的本质是微批处理,每个 batch 都依赖 Driver,我们可以把 Spark Streaming 理解为时间维度上的 Spark DAG。 Flink 也采用了经典的主从模式,DataFlow Graph 与 Storm 形成的拓扑 Topology 结构类似,Flink 程序启动后,会根据...