'''利用模拟退火算法求: min f(x) = (x-2)*(x+3)*(x+8)*(x-9)'''importnumpyasnpimportmatplotlib.pyplotaspltdefinputfun(x):return(x-2)*(x+3)*(x+8)*(x-9)initT=1000#初始温度nowT=initTminT=1#温度下限iterL=1000#每个T值的迭代次数delta=0.95#温度衰减系数k=1#物理意义上的莫尔兹...
模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。
现代模拟退火算法形成于20世纪80年代初,在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温时,会导致不是最低能态...
模拟退火算法,模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
1、爬山算法 在了解模拟退火算法之前,先来看一下爬山算法:爬山算法是一种贪心算法,该算法每次从当前的解空间中选取一个解作为最优解,直到达到一个局部最优解。假设函数f(x)的图像如下图: 现在使用爬山算法来求f(x)的最大值,若C为当前最优解,则爬山算法搜索到A就会停止搜索,这会获得一个局部最优解,而不是...
模拟退火(Simulated Annealing,SA)是一种概率型优化算法,它受到冶金学中退火过程的启发。在冶金学中,将材料加热到高温,然后缓慢冷却,可以减少材料内部的缺陷,提高其晶体结构的有序性。模拟退火算法将这一过程抽象化,用于解决数学优化问题。一、基本原理 1. 初始状态:算法从一个随机解或某个初始解开始。2. ...
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,...
模拟退火算法能避免陷入局部最优解。它在处理大规模优化问题时表现出色。算法的参数设置需要精心调试。不同的问题可能需要不同的参数组合。模拟退火算法可以与其他算法结合使用。从而提高解决问题的效率和效果。它在组合优化问题中应用广泛。比如旅行商问题等。对于连续优化问题也能发挥作用。能够处理非线性的目标函数。 算...
模拟退火算法 1.1 算法原理 模拟退火算法的基本思想是从一给定解开始 ,从邻域 中随机产生另一个解 ,接受 Metropolis准则允许目标函数在 有限范围内变坏 ,它由一控制参数 t决定 ,其作用类似于物 理过程中的温度 T,对于控制参数的每一取值 ,算法持续进 行“产生 —判断 —接受或舍去 ”的迭代过程 ,对应着固体在...