第三步:将上一步的训练好的last.pt 放到prune.py 中进行剪枝,控制剪枝率;剪枝好的模型,在根目录下:pruned_model.pt 是fp32的,你除以2会得到最后的模型大小 第四步:Finetune,用刚刚的pruned模型重新训练,得到最优模型,就是最小且最快,且最好的啦~(和原始和稀疏训练的比较一下哦) 上面是俩个BN的可视化,...