首先,求出根号下1+x的平方的导数:y=sqrt(1+x^2)y’=[1/(2√(1+x^2))]×2x y’=x/√(1+x^2)接下来,用泰勒公式展开y=x/√(1+x^2)函数:在x=0处展开,得到:y=0+0/2!+0/3!+0/4!+0/5!所以,根号下1+x的平方的泰勒展开式为:y=0+0/2!+0/3!+0/4!+0/5!
()(1+z)α=Σk=0∞Cαkzk,为简单起见,收敛域与α的取值等便不做讨论,望谅解。
已知 (1+x)的m次方展开式为 1 + mx + [m(m-1)/2!]*(x^2) + [m(m-1)(m-2)/3!]*(x^3) + .+[m(m-1)(m-2).(m-n+1)/n!]*(x^n)把m=1/2 带入 上式子x换成x^2就行 如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数...
令 u = -x^2, 代 √(1+u)展开式:√(1+u) = 1+u/2-u^2/(2*4)+(1*3)u^3/(2*4*6)-(1*3*5)u^4/(2*4*6*8)+... u∈[-1, 1]。则 √(1-x^2) = 1-x^2/2-x^4/(2*4)-(1*3)x^6/(2*4*6)-(1*3*5)x^8/(2*4*6*8)+... x∈[-1, 1]。...
计算三阶导数代入泰勒展示即可,参考下图:
第2集|高考数学真题,解带根号的不等式,经常考,一错一大片 (1985年全国高考数学题)解不等式√(2x+5)>x+1.,本视频由雷说数学提供,0次播放,好看视频是由百度团队打造的集内涵和颜值于一身的专业短视频聚合平台
简单计算一下即可,答案如图所示
当我们将函数x/根号1+x^2进行幂级数展开的时候,我们可以使用泰勒级数进行展开。首先,我们需要找到在x=0处的函数的各阶导数。可以发现,该函数的一阶导数为(1+x^2)^(-1/2),而二阶导数为x(1+x^2)^(-3/2)。因此,我们可以列出函数在x=0处的泰勒级数公式:x/根号1+x^2 = f(0) + f'(0)x + f...
用公式带:(1+x)的μ次方 = 1 + μ x +(μ (μ-1) / 2!)x+(μ(μ-1)(μ-2) / 3!)x+ ……其中,μ=1/2,x<=2x即可。有兴趣你也可以自己推导一下这个公式 本回答由网友推荐 举报| 答案纠错 | 评论 4 8 为您推荐: lnx泰勒公式 cos泰勒公式 根号x泰勒展开 泰勒公式 维基百科 三角...
1] 求x/(1-x^2)^2的泰勒展开式你把1/(1-x^2)^2泰勒展开,然后给展开式乘以X就可以。在展开1/(1-x^2)^2的时候,你可以换做展开1/(1-x)^2然后再将x换... 开服列表今日开服列表好服发布站 开服列表表发布开服列表点击领取,跨版本每天领50!屌丝逆袭!开服列表,独创开服列表!全版本通用,每日领...