根号下(1+x)的泰勒展开可以通过泰勒公式来计算。泰勒公式的一般形式如下:f(x) = f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...对于根号下(1+x),我们可以选择以a=0展开。然后我们需要计算f(a)...
根号下(1+x)的泰勒公式展开可以用泰勒级数来表示。泰勒级数是将一个函数表示为无穷级数的形式,通过函数的各阶导数来展开。根号下(1+x)的泰勒公式展开如下:f(x) = √(1 + x) = √(1) + (1/2) * x - (1/8) * x^2 + (1/16) * x^3 - (5/128) * x^4 + ...泰勒公...
根号下(1+x)的泰勒公式展开可以表示为f(x)=1+1/2x-1/8x²+o(x³)。一种展开方法是直接应用泰勒公式,通过计算函数在某点的各阶导数值来获得展开式。另一种方法是利用常见的函数带佩亚诺余项的泰勒公式展开,将a=1/2代入,即可得到其泰勒公式展开式。麦克劳林公式是泰勒公式的特殊形...
根号下(1+x)泰勒公式展开为 f(x)=1+1/2x-1/8x²+o(x^3)方法一:根据泰勒公式的表达式 然后对根号(1+x)按泰勒公式进行展开。方法二:利用常见的函数带佩亚诺余项的泰勒公式 将a=1/2代入,可得其泰勒公式展开式。
首先,求出根号下1+x的平方的导数:y=sqrt(1+x^2)y’=[1/(2√(1+x^2))]×2x y’=x/√(1+x^2)接下来,用泰勒公式展开y=x/√(1+x^2)函数:在x=0处展开,得到:y=0+0/2!+0/3!+0/4!+0/5!所以,根号下1+x的平方的泰勒展开式为:y=0+0/2!+0/3!+0/4!+0/5!
f(x)=(x)^(1/2) 在x0=1处的展开式为:f(x)=f(x0)+[f'(x0)/1!(x-x0)+f''(x0)(x-x0)^2/2!+...+f(n))(n)*(x-x0)^(n)/n!+...f(x0)=f(1)=1,f'(x0)=[(1/2√x0)=1/2.f''(x0)=-1/4.f(n)(x0)={[(-1)^(n-1)*1*2*3...(2n-3)...
f(x)=(x)^(1/2) 在x0=1处的展开式为:f(x)=f(x0)+[f'(x0)/1!(x-x0)+f''(x0)(x-x0)^2/2!+...+f(n))(n)*(x-x0)^(n)/n!+...f(x0)=f(1)=1,f'(x0)=[(1/2√x0)=1/2.f''(x0)=-1/4.f(n)(x0)={[(-1)^(n-1)*1*2*3...(2n-3)...
根号下(1+x)的泰勒公式展开为 f(x)=1+1/2x-1/8x²+o(x³) 。可以用以下两种方法进行展开:根据泰勒公式的表达式,对根号下(1+x)按泰勒公式进行展开。利用常见的函数带佩亚诺余项的泰勒公式,将a=1/2代入,可得其泰勒公式展开式。需要注意的是,在展开过程中,求导次数越高,...
2018-01-24 根号下1+x^2的泰勒展开公式 75 2017-05-16 √(1+x^2)的泰勒展开式怎么求,为什么x^2可以代替x 1 2016-05-21 根号下1-x2的泰勒公式怎么求 1 2016-10-26 求教√(1+x∧2)用麦克劳林公式三阶展开的详细过程 31 2014-11-25 请问根号下1+x*x的n阶泰勒公式怎么求呀,谢谢! 2016-...
根号其实就是1/2次方,写成指数形式,然后可以根据二项式定理的形式展开泰勒公式