样本方差的期望等于总体方差,证明如下:设总体为X,抽取n个i。i。d。的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n。其样本方差为S =( (Y... 样本方差的期望等于什么? 样本方差的期望等于总体方差设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn...
样本方差的期望等于总体的方差如下:总体方差的计算公式分母是n,样本方差的计算公式分母是n-1,抽取样本的目的是推算出总体的信息,计算样本方差的目的也是推算出总体的方差,但是计算样本方差时为了能使计算结果更接近总体方差的值。根据无偏性的原则(多次抽样,计算出多个样本的方差,对这些方差取平均值,...
DYi并不是样本方差的期望,把它代入样本方差的期望表达式中正好可以验证样本方差的期望等于总体的方差。设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n 其样本方差为S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1)为了记...
那么我们通常用样本方差Sn2=1n−1∑i=1n(Xi−X¯)2来估计总体方差σ2,其中X¯=1n∑i=1nXi...
所以,用样本方差去推断总体方差,本质上是用一个概率分布去推断一个实数(总体方差σ2)。
样本方差期望等于总体方差不是只出现在标准正太分布吗是沪江提供的学习资料,沪江是专业的互联网学习平台,致力于提供便捷优质的网络学习产品,在线课程和服务。
任何分布样本方差的期望是等于总体的方差的。求采纳
样本方差的期望等于总体方差,证明如下:设总体为X,抽取n个i。i。d。的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n。其样本方差为S =( (Y-X1)^2 + (Y-X2)^2 + ...+ (Y-Xn)^2 ) / (n-1)。为了记号方便,我们只看S的分子部分,设为A,则EA=E( n * ...
不需要。
DYi并不是样本方差的期望,把它代入样本方差的期望表达式中正好可以验证样本方差的期望等于总体的方差。设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n 其样本方差为S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1)为了...