1满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。 2完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每...
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉 树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。 2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对 于深度为K的,有n个结点的二叉树,当且...
前序遍历:根结点 ---> 左子树 ---> 右子树 中序遍历:左子树---> 根结点 ---> 右子树 后序遍历:左子树 ---> 右子树 ---> 根结点 层次遍历:只需按层次遍历即可 例如,求下面二叉树的各种遍历 前序遍历:1 2 4 5 7 8 3 6 中序遍历:4 2 7 5 8 1 3 6 后序遍历:4 7 8 5 2 6 3 1...
// 层次遍历二叉树voidlevelOrder(structTreeNode*root,intnodeCount){// 定义一个顺序队列用于辅助层序遍历structTreeNode**queue=(structTreeNode**)malloc(sizeof(structTreeNode*)*nodeCount);// 队头 队尾intfront=0,rear=0;structTreeNode*p=root;// 将根节点加入队列queue[rear++]=p;// 遍历while((...
前序遍历: 先输出父节点,再遍历左子树,最后遍历右子树 中序遍历 : 先遍历左子树,再输出父节点,最后遍历右子树 后序遍历 : 先遍历左子树,再遍历右子树,最后输出父节点 如何区分呢? 看输出父节点的顺序,就可以确定是 前序、中序、后序 实例 我们先来分析下 将 下面的几个数 放到二分搜索树中会是怎样的存...
1、先序遍历 先序遍历的顺序是:先根节点,再左节点,再右节点,即根节点->左节点->右节点。 如: 先序遍历的顺序为:0,1,5,2,3,4 2、中序遍历 中序遍历的顺序为,先左节点,再根节点,再右节点,即左节点->根节点->右节点。 还是以下面的二叉树为例: ...
深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下: 前序遍历:根节点->左子树->右子树 中序遍历:左子树->根节点->右子树 ...
二叉树 概念 二叉树是一种非常重要的数据结构,非常多其他数据结构都是基于二叉树的基础演变而来的。对于二叉树,有深度遍历和广度遍历,深度遍历有前序、中序以及后序三种遍历方法,广度遍历即我们寻常所说的层次遍历。由于树的定义本身就是递归定义,因此採用递归的方法去实现树的三种遍历不仅easy理解并且代码非常简洁,而...
深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下: 前序遍历:根节点->左子树->右子树 中序遍历:左子树->根节点->右子树 ...
解析 A二叉树的查找有深度优先和广度优先两种。深度优先包括:前序遍历、中序遍历和后序遍历。广度优先包括层次遍历。所以,本题正确答案为选项A。 [解析]二叉树的查找有深度优先和广度优先两种。深度优先包括:前序遍历、中序遍历和后序遍历。广度优先包括层次遍历。所以,本题正确答案为选项。