本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,...
scikit-learn是一个开源的Python机器学习库,专注于提供简单且高效的工具来进行数据挖掘和数据分析。它支持监督学习和无监督学习,并提供了一系列算法,如分类、回归、聚类、降维等。 官网链接: scikit-learn keras: Keras是一个高层神经网络API,它能够以TensorFlow、CNTK或Theano为后端运行。Keras的设计初衷是便于快速实...
机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第2版) (法)奥雷利安·杰龙 计算机网络·人工智能·0字 完本| 更新时间 本书分为两部分。第一部分,机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分,神经网络和深度学习,涵盖以下主题:什么是神经网络...
(法)奥雷利安·杰龙创作的计算机网络小说《机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第3版)》,已更新0章,最新章节:。本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习
本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,...
第一部分主要基于Scikit-Learn,而第二部分使用TensorFlow和Keras。 不要仓促地跳入深水区:虽然深度学习无疑是机器学习中非常令人兴奋的领域,但你应该首先掌握基础知识。此外,大多数问题都可以使用更简单的技术来很好地解决,例如随机森林和集成方法(在第一部分讨论)。深度学习最适合解决图像识别、语音识别或自然语言处理等...
《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第13章 使用TensorFlow加载和预处理数据 目前为止,我们只是使用了存放在内存中的数据集,但深度学习系统经常需要在大数据集上训练,而内存放不下大数据集。其它的深度学习库通过对大数据集做预处理,绕过了内存限制,但TensorFlow通过Data API,使一切都容易了:只需要创建...
Keras易于使用且模块化,非常适合快速原型设计。 TensorFlow: 是一个开源的机器学习框架,由Google开发。它灵活且高效,被广泛用于研究和生产中的深度学习任务。 优势 scikit-learn: 易于使用,文档齐全,社区支持良好,适合入门和中等规模的数据处理任务。 Keras: 接口简洁,适合快速实验和原型设计,支持多种后端,易于扩展。
第一部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。 通过本书,你会学到一系列可以快速使用的技术。每章的练习可以帮助你应用所学的知识,你只需要有一些编程经验。所有代码都可以... (展开全部) 作者简介 ··· Aurélien Géron是机器学习方面的顾问。曾就职于Google,在2013年到2016年领导过YouTu...