一旦均匀或非均匀地生成网格或网格点,泊松方程就被有限差分近似代替。离散化后得到的线性代数方程组采用直接法或迭代法求解。通过求解给定的网格或网格点,得到满足所有网格点的泊松方程的近似解。 使用FDM 求解泊松方程,将具有无限自由度的连续场问题替换为有限正则模态的离散场问题。有限差分法提供了一种直接直观的方法...
基于有限差分法的泊松方程第一类边值问题求解
在此代码中,泊松方程的边界条件是沿 4 个端壁的已知电位 100V 和 -100V。 两个电荷为 2nC 的相同偶极子放置在 x=10 和 x=-10 处。 泊松方程使用有限差分法 (FDM) 迭代求解。 泊松方程的解被绘制为电势等值线。 电场使用梯度函数计算,也显示为颤动图。
一旦均匀或非均匀地生成网格或网格点,泊松方程就被有限差分近似代替。离散化后得到的线性代数方程组采用直接法或迭代法求解。通过求解给定的网格或网格点,得到满足所有网格点的泊松方程的近似解。 使用FDM 求解泊松方程,将具有无限自由度的连续场问题替换为有限正则模态的离散场问题。有限差分法提供了一种直接直观的方法...